
Deterministic Time Hierarchy Theorem

Marco L Carmosino

September 25, 2023

1 Introduction
Strictly more computational resources can solve strictly more problems. Variations of this theorem initiated
research in computational complexity theory [HS65]. We will prove this hierarchy theorem for deterministic
time. Our quantitative statement will be weaker than even the original theorem of [HS65], but our proof
should be easier to translate into formal systems. All theorem numbers refer to AB unless otherwise specified.
We use the following facts and notation about Turing Machines (TMs).

• Every TM can be encoded by a bitstring of finite length.

• TMs process inputs of arbitrary finite length.

• Write M(x) for “the output of TM M on input x ∈ {0, 1}∗” after M halts

• Write L(x) for the characteristic function of a language L ⊆ {0, 1,#}∗

L(x) =

{
1 if x ∈ L
0 otherwise

2 Definitions & Tools
We define complexity classes as sets of languages that can be decided with a given amount of resources.

Definition 1 (Deterministic Time Complexity). Let L ⊆ {0, 1,#}∗ be a language. TM M decides L iff

∀x M(x) =

{
1 ⇐⇒ x ∈ L
0 ⇐⇒ x ̸∈ L

Let T : N→ N be a step-counting function. M runs in T (n)-time iff ∀x M(x) halts in at most T (|x|) steps.

L ∈ DTIME[T (n)]

⇐⇒
∃c ∈ N, TM M running in c · T (n) time and deciding L

Theorem 1 (Efficient Universal Turing Machine (UTM)).
There is a TM U such that for all inputs M, t ∈ {0, 1}∗ and x ∈ {0, 1,#}∗
If M(x) halts in t steps, then

U(M,x, t) outputs M(x) in C ′t log t steps
Otherwise,

U(M,x, t) outputs timeout in C ′t log t steps
Where C ′ depends on the number of tapes, symbols, and states of M but NOT the input length |x|

1

3 Deterministic Time Hierarchy Theorem
Theorem 2 (Simplified Deterministic Time Hierarchy Theorem).

∀b ∈ N DTIME[nb] ⊊ DTIME[n5b]

Proof idea. We have enough time — O(n5b) steps — to simulate and then disagree with every deterministic
TM that runs in only O(nb) steps. We will describe a language Hb where part of each input x is treated
as the code of a TM M , and Hb(x) = ¬M(x) when M runs in O(nb) time. This will make it impossible
for such M to agree with Hb on all inputs. When the code of M appears in a long enough input x, it is
guaranteed to disagree with Hb.

Proof. We’ll begin by bringing the theorem statement closer to a sentence of first-order logic, to structure a
proof that will be straightforward to formalize.

∀b ∈ N ∃Hb ∈ DTIME[n5b] ∀L ∈ DTIME[nb] ∃n0 ∈ N ∃x ∈ {0, 1,#}∗ (1)
Hb(x) ̸= L(x) (2)

We will discharge each quantifier above in turn, while tracking the work required to construct intermediate
objects. First, let b ∈ N be arbitrary. Next, we define our “diagonal” TM D.

Algorithm 1 Diagonal Machine D(x)

1: n← |x|
2: if x matches M#0∗ where M ∈ {0, 1}∗ then
3: Run U(M,x, n3b) for at most n5b steps
4: cases
5: U timeout 7→ output Rej
6: M timeout 7→ output Rej
7: M Acc 7→ output Rej
8: M Rej 7→ output Acc
9: else

10: output Rej

Let Hb denote the language of D. We know Hb ∈ DTIME[n5b] because |x|, pattern matching, and
maintaining a step counter are in DTIME[n2]. Observing the clock on U concludes the runtime upper bound.

Now fix arbitrary L ∈ DTIME[nb] witnessed by M running in time CMnb for some constant CM and
deciding L. All that remains is to witness the last two quantifiers of (1): a sufficiently large input length
and particular input where Hb and L must disagree. Our proof works by simulating the execution of D.

Consider “matching” inputs of the form M#0∗. If we can ensure that at least one such input avoids the
Timeout cases, we are done.

1. Substituting into the efficient UTM theorem, there exists C ′
M depending on M but not |x| such that

U(M,x, n3b) runs in time C ′
M × CM × n3b × log(CMn3b). Manipulating inequalities over N, we have

∃n1 ∈ N ∀n > n1 n5b > C ′
M × CM × n3b × log(CMn3b).

Therefore, on input lengths greater than n1, U will not timeout.

2. From the definition of “runtime” M takes CMnb steps to halt on any input x. Again manipulating
inequalities over N, we have

∃n2 ∈ N ∀n > n1 n3b > CMnb

Therefore, on input lengths greater than n2, simulating M for n3b steps will not timeout.

Let n0 = max{n1, n2} and consider the matching input x = M#0n0 so that |x| > n0 and M is the
bitstring encoding TM M . D(x) will match and run U . By the two claims above, D(x) does not timeout.
Consider the remaining cases.

Suppose M(x) = Acc. Then D(x) = Rej so L(x) ̸= Hb(x).
Suppose M(x) = Rej. Then D(x) = Acc so L(x) ̸= Hb(x).

2

4 How “Constructive” is the DTIME Hierarchy Theorem?
Observe that this proof gives us more than was promised. Let x match M#0ℓ where ℓ ≥ n0 − |M |. Any
such input disagrees with Hb, if M runs in O(nb) time. This means we can produce mistakes computing Hb

at every sufficiently long input length.
Furthermore, mistakes are easy to find: we need only print the encoding of M and then append enough

padding to reach the desired input length. This error-printer only depends on a constant amount of infor-
mation about each language in DTIME[nb], and correctness follows from our proof of the deterministic time
hierarchy theorem.

This suggests the definition of an algorithmic task that could accompany or be extracted from the proof
of a lower bound. Such efficient witnessing of the errors guaranteed to exist by a separation (Equation 1)
was originally introduced by [Kab01] and is key to many results in (meta-)complexity. We give a simplified
variant of Definition 1.1 in [Che+22].

Definition 2 (Refuter). For a language L and a TM M , a refuter for L against M is a polynomial time
algorithm R that, given 1n as input, prints an n-bit string witnessing that M fails to decide L almost
everywhere. Formally,

∃n0 ∈ N ∀n > n0 L(R(1n)) ̸= M(R(1n))

Definition 3 (Constructive Separation). For a complexity class C and a languge L, a constructive separation
of L ̸∈ C means that, for every C-algorithm M attempting to decide L, there is a refuter for L against M .

Notice how a refuter is allowed to depend on the target machine. We need not refute every C-machine at
once, but are allowed to depend on the code of each individual machine. Inspecting the proof of Theorem 2,
we have

Corollary 1 (Refuters for the Diagonal Language).
There is a constructive separation of Hb ̸∈ DTIME[nb] for every b.

Introducing non-uniformity complicates matters. Is a refuter still meaningful? Yes — if we give the
refuter access to the same advice sequence as the target machine, this ensures a “fair fight” between resource
bounds and still distinguishes between proofs of separations that can be transformed into efficient algorithms,
and those that cannot.

Definition 4 (Refuter Against Non-Uniform Machines). For a language L and advice-taking TM M with
advice sequence α1, α2, . . . αn . . . a refuter for L against M with advice sequence α is a polynomial time
algorithm R that, given ⟨1n, αn⟩ as input, prints an n-bit string witnessing that M fails to decide L almost
everywhere. Formally,

∃n0 ∈ N ∀n > n0 L(R(1n, αn)) ̸= M(R(1n, αn))

Now, the refuter is allowed to depend on both the code of M and the sequence of advice that M sees at
each input length.

References
[Che+22] Lijie Chen et al. “Constructive Separations and Their Consequences”. In: CoRR abs/2203.14379

(2022). doi: 10.48550/arXiv.2203.14379. arXiv: 2203.14379. url: https://doi.org/10.
48550/arXiv.2203.14379.

[HS65] J. Hartmanis and R. E. Stearns. “On the computational complexity of algorithms”. In: Transac-
tions of the American Mathematical Society 117 (1965), pp. 285–306.

[Kab01] Valentine Kabanets. “Easiness Assumptions and Hardness Tests: Trading Time for Zero Error”.
In: J. Comput. Syst. Sci. 63.2 (2001), pp. 236–252. doi: 10 . 1006 / jcss . 2001 . 1763. url:
https://doi.org/10.1006/jcss.2001.1763.

3

