
The Relativization Barrier

Marco L Carmosino

September 30, 2023

1 Introduction
Using diagonalization, we can prove results like the deterministic time hierarchy theorem: separation of
DTIME[f(n)] from DTIME[g(n)] when f(n) is sufficiently larger than g(n). Notice that the computational
resource is the same — deterministic time — on both sides of this separation. Major open problems ask
instead for separations between different resources: space, time, nondeterminism, parallelism, randomness,
non-uniformity, and many more. For example, can we separate NTIME[f(n)] from DTIME[g(n)] for non-
trivial f and g? Does “plain diagonalization” suffice to answer such questions? Often, no. Here we will see
why, using the first meta-mathematical barrier in computational complexity theory [BGS75].

2 Definitions & Tools
We’ll begin by stating the most important1 open question in theoretical computer science. First, we give
machine-based definitions of two fundamental complexity classes.

Definition 1 (Deterministic & Nondeterministic Polynomial Time).

P =
⋃
c∈N

DTIME[nc]

NP =
⋃
c∈N

NTIME[nc]

Let’s adopt Cobham’s Thesis: “feasible” languages can be decided in a fixed polynomial2 number of steps
on a deterministic Turing Machine. This identifies NP as the class of languages where membership is feasibly
checkable. That is, for every language L ∈ NP given x and a certificate y we can check in deterministic
polynomial time if y proves that x ∈ L. Formally,

Definition 2 (Verifier Definition of NP 2.3 of [AB09]). A language L ∈ {0, 1}∗ is in NP if there exists a
polynomial p ∈ poly(n) and a polynomial-time deterministic TM M (the verifier for L) such that

∀x ∈ {0, 1}∗ L(x) ⇐⇒ ∃y ∈ {0, 1}p(|x|) M(x, y)

We now ask: does every problem with efficiently checkable solutions have efficiently discoverable solutions?

Question 1.
Is P equal to NP?

1arguably
2Though the disctinctions between linear and quadratic runtimes are the subject of rich investigations into “fine-grained”

complexity, we encounter sufficient difficulties attempting to separate P from NP for the purposes of these notes.

1

Let’s motivate the class NP by defining natural problems related to logic, following [AB09, Section 2.7.2].
Fix a formal axiomatic system and logical language A. For reasonable A, these two languages are feasible
to decide:

Parse = {x ∈ {0, 1}∗ | x encodes a well-formed formula φ of A}
Proves = {⟨x, y⟩ | Parse(x) ∧ y encodes an A-proof of φ}

That is, Parse and Proves are in P. Using the verifier definition, the “Bounded-Length Provability” language

BProvable = {⟨x, 1n⟩ | Parse(x) ∧ φ has a formal proof of ≤ n symbols in formal system A}

is in NP. Therefore, asking if P = NP is like asking if we can automate the areas of mathematics where
proofs have “feasible” length. There are many detailed treatments of motivation and history for the P vs
NP problem (AB, Lipton’s Blog, Avi’s Knowledge Creativity essay). It is a longstanding and central open
problem in theoretical computer science; many people have tried to resolve it. But this is an empirical
observation, not a theorem — we want mathematical justification for the difficulty of resolving P vs NP.
This note describes the statements that can be proved “in a straightforward way” using diagonalization, and
then we show that P ̸= NP is not one of these statements.

3 Relativizing Statements About Complexity Classes
Diagonalization arguments can give us more than intended. To see how, we’ll define Oracle Turing Machines.
These TMs are given access to a black box (“Oracle”) containing some language O ⊆ {0, 1}∗, which they can
query to obtain the answer to “is q in O” in a single step. Thus, MO is given the ability to decide O for
“free”, paying only for the resources needed to write down queries. Later we will restrict how machines are
allowed to access an oracle, but in the most basic model a machine may issue a number of queries limited
only by its time bound. We extend this notion to add a fixed oracle to an entire complexity class, possibly
expanding the set of languages in the class.

Definition 3 (Relativized P and NP). For any language O ⊆ {0, 1}∗ the class PO is all languages that
can be decided by a deterministic polynomial time oracle machine with access to O. The class NPO is all
langauges that can be decided by nondeterminstic polynomial time oracle macine with access to O.

We can relativize any complexity class: take the machine definition of the class and allow it access to
some O via queries. For any class C, ∀O C ⊆ CO — adding an oracle will never “shrink” a complexity class,
it can only become more powerful (decide more languages) or stay the same (if the oracle is useless). Some
theorems remain true relative to every oracle, no matter how complicated or strange. For example,

Theorem 1 (Relativizing Simplified Deterministic Time Hierarchy Theorem).

∀O ⊆ {0, 1}∗ ∀b ∈ N DTIMEO[nb] ⊊ DTIMEO[n5b]

Again, the complexity measure is the same on both sides of the separation: we have added the same
oracle to deterministic time. Recalling the proof explains why: we only need the Universal TM to be able to
efficiently simulate O(nb) time in O(n5b) time. If it has the same oracle as the target machine, it can simply
“pass through” queries and obtain the same results with constant overhead. Generalizing from this example,
we have

Definition 4 (Relativizing Statements). Let φ(C,D) be a statement about complexity classes C and D. A
true statement φ is Relativizing if ∀O ⊆ {0, 1}∗ φ(CO,DO) — when we equip every class in the statement
with the same oracle, it remains true. We write φO as shorthand for equipping every complexity class or
machine mentioned by φ with oracle O.

To prove that φ is relativizing, we inspect the proof of φ and generalize it to ∀O φ(CO,DO). This is how
some proof techniques give us more than expected; we get φ “relative to” every oracle, not just φ. Many
heuristics have been developed for extracting relativizing theorems from existing proofs. When proofs of φ
use only

2

1. Encoding TMs via bitstrings

2. An Efficient UTM

these arguments can often be adapted to prove that φ is relativizing. Intuitively, they treat computation as
a “black box” so the addition of the same oracle to all classes involved does not change whether a simulation
is efficient or not. Unfortunately, this is not formal: a statement φ is relativizing when a human can extend
the proof of φ to show ∀O φO. Later, we will give a logical characterization of relativizing proofs. For now,
we will see how even this informal notion can help explain why resolving P vs NP and many other open
questions seems so difficult. For this, we need

Definition 5 (Non-Relativizing Statement). Let φ(C,D) be a statement about complexity classes C and D.
A statement φ is Non-Relativizing if ∃A φA ∧ ∃B ¬φB .

To prove that φ is non-relativizing, we must exhibit two oracles — one where φ is true and one where it
is false. We need not know if φ is true or false to show that it is non-relativizing, in contrast to a relativizing
statement. This makes it plausible to discuss non-relativizing conjectures. It turns out that many open
questions ask about non-relativizing statements, and this is the substance of the relativization barrier. The
informal argument goes:

1. Many theorems φ are relativizing statements.

2. Therefore, many proofs consist only of relativizing “ingredients” — they extend to imply ∀O φO.

3. Many conjectures ψ in complexity theory concern non-relativizing statements ψ.

4. A “relativizing proof” of ψ would extend to imply ∀O ψO.

5. Therefore, no “relativizing proof” of ψ can exist, because it would extend to imply a contradiction:
∃B ¬ψB by the definition of a non-relativizing statement.

Our world does not contain enough scare quotes to sufficiently decorate the above “argument.” The
phrase extend to does a lot of work; it corresponds to human inspection of a proof. Even interpreting the
barrier can be controversial, because we have been somewhat cavalier about the definition of a relativizing
statement — what if different ways of adding an oracle to a complexity class result in different classifications
of the same φ, as relativizing or non-relativizing? Nevertheless, the relativization barrier has been a rich
source of inspiration and research directions. And in the case of P vs NP, it seems that there is only one
reasonable way to add an oracle to both classes (using the machine definitions above). So, we conclude by
showing that P ̸= NP is a non-relativizing statement, and take this as one mathematical justification that
the conjecture is difficult to prove. We exhibit appropriate oracles below.

4 P ̸= NP is Behind the Relativization Barrier
Theorem 2 (3.7 of [AB09], originally [BGS75]).
There exist oracles A,B such that PA = NPA and PB ̸= NPB. Thus, P ̸= NP is a non-relativizing statement.

Proof.

Claim 1. ∃B PB = NPB

To equate complexity classes relative to an oracle, we supply an oracle so powerful that it subsumes both
base classes. Let’s allow P and NP to ask about an excessive number of steps of deterministic computation,

EXPCOM = {⟨M,x, 1n⟩ : M(x) = 1 within 2n steps}.

Plugging in the right machine description and padding, we immediately have PEXPCOM = EXP. Then,

EXP ⊆ PEXPCOM ⊆ NPEXPCOM ⊆ EXP.

For the last inclusion: NP can only issue poly-many oracle queries of poly-length on exponentially-many
branches of computation to EXPCOM. Thus, brute-force simulation of NP in EXP has enough time to
simulate each oracle query with an efficient UTM.

3

Claim 2. ∃B PB ̸= NPB

Let L be any language. Define the unary content-indicator language based on L as

UL = {1n | some n-bit x in in L}

That is, 1n ∈ UL ⇐⇒ Ln is non-empty. With nondeterminism, every content-indicator language is easy.
Indeed, we only need enough time to write down a query: ∀L UL ∈ NTIME[O(n)]L. On input 1n do the
following:

1. Guess x ∈ {0, 1}n

2. Query the oracle with x

3. Accept if x ∈ L
There is at least one accepting path iff there is at least one n-bit x in L, correctly deciding UL.

On the other hand, we will constructB such that UB ̸∈ PB . Fix an enumeration of TMsM1,M2, . . . ,Mi, . . .
where each TM is represented infinitely many times; the ‘code # padding’ enumeration from our simplified
proof of the deterministic time hierarchy theorem would suffice, for example. The (perhaps ironic) idea is to
diagonalize against deterministic oracle TMs: find out which stringa they attempt to query, and define the
oracle B such that queried strings give no information about UB .

Algorithm 1 Oracle Construction
Ensure: ∀x B(x) ∈ {?, 0, 1}
1: ▷ All strings are either undetermined, outside B, or inside B ◁
2: i← 0 ▷ stage counter
3: ∀x B(x)← ?
4: ▷ Oracle, initially undetermined for every string ◁
5: for all i ∈ N do
6: ▷ Each iteration, fix n and B such that MB

i errs on UB(1
n) in 2n/10 time ◁

7: n← max{ |x| : B(x) ∈ {0, 1} }+ 1
8: ▷ n is larger than length of every string determined so far ◁
9: Simulate MB

i (1n) for 2n/10 steps,
Monitoring and responding to each oracle query q:

10: if B(q) ∈ {0, 1} then ▷ q is determined, answer consistently
11: Answer with B(q)
12: else if B(q) = ? then ▷ q is not determined, just say NO & determine q
13: Answer Mi with 0
14: B(q)← 0
15: ▷ Ensure Mi is wrong on 1n using ? strings — more n-bit strings than steps of M , so it works ◁
16: if MB

i (1n) Accepted then
17: B(x)← 0 ∀x ∈ {0, 1}n
18: ▷ =⇒ UB(1

n) = 0 =⇒ UB(1
n) ̸=MB

i (1n) ◁
19: else
20: x← lex-first x such that B(x) =?
21: B(x)← 1
22: ▷ =⇒ UB(1

n) = 1 =⇒ UB(1
n) ̸=MB

i (1n) ◁

Let M be an arbitrary p(n) ∈ poly-time oracle TM. M appears infinitely often in our enumeration of TMs
and line 7 selects monotonically increasing n. Fix i witnessing this, such that Mi codes M and p(n) < 2n/10.
This means the simulation of M will terminate. Further, line 7 ensures that every string in {0, 1}n is not
determined at the beginning of simulation. Consider the state after simulation of M concludes (line 15):
at most 2n/10 strings are determined, by the runtime bound on M . So at least 2n − 2n/10 strings remain
? at line 15 of stage i. Case analysis on the acceptance of M concludes the proof. If M accepts, then we
determine the remainer of strings such that Bn is empty, and so M is incorrect. If M rejects, we select one
of the remaining ? strings to set to 1, and so M is incorrect.

4

5 Discussion Questions
1. Can one prove φ is relativizing meaning ∀OφO ⊕ ∀O¬φO without proving φ ?

2. Is NP ̸= ioP a non-relativizing statement?

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge

University Press, 2009. isbn: 978-0-521-42426-4. url: http://www.cambridge.org/catalogue/
catalogue.asp?isbn=9780521424264.

[BGS75] Theodore P. Baker, John Gill, and Robert Solovay. “Relativizations of the P =? NP Question”.
In: SIAM J. Comput. 4.4 (1975), pp. 431–442. doi: 10.1137/0204037. url: https://doi.org/
10.1137/0204037.

5

