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1 Introduction
How can we “get past” the relativization barrier to prove new lower bounds? Our current formulation of the
barrier is informal, so we give heuristics. Recall the definition of a non-relativizing statement.

Definition 1 (Non-Relativizing Statement). Let φ(C,D) be a statement about complexity classes C and
D. A statement φ is Non-Relativizing if ∃A φA ∧ ∃B ¬φB . We write φO as shorthand for equipping every
complexity class or machine mentioned by φ with oracle O.

Two approaches towards non-relativizing separations are:

Circuit Lower Bounds Relativizing proofs treat computation as a “black box” — using only efficient
simulation and enumeration of TMs. We can try switching to a combinatorial model of computation
that forces proofs to use “white box” reasoning.

Non-Relativizing Lemmas We can examine the proof of any non-relativizing statement about computa-
tion — not necessarily a separation — and mine it for helpful “ingredients” that avoid relativization,
if used in a sufficiently essential way.

We present a simplified proof of the the first blatantly non-relativizing separation: MA-EXP ̸⊂ P/poly
[BFT98]. The proof combines both approaches suggested above: borrowing non-relativizing techniques from
the proof of IP = PSPACE and proving lower bounds for circuits instead of machines.

2 Definitions & Tools

2.1 Circuits
Relativizing arguments use that every TM has a constant length description. We can instead consider
computation by Boolean devices — models composed of logic gates where a different device is used at each
input length. For example, we have distinct 8-bit and 16-bit adder circuits. This makes circuit complexity
a non-uniform model of computation.

Definition 2 (Boolean Circuits on n-Bit Inputs 6.1, 6.2 of [AB09]). An n-input Boolean Circuit is a directed
acyclic graph (DAG) of in-degree at most 2 where each node is labeled with exactly one of:

• n input symbols x1, . . . , xn

• three logical operation symbols {∧,∨,¬}

• the output symbol o

We call the nodes gates and the in-degree bound the fan-in. Because the out-degree is unbounded, we have
unrestricted fan-out. We call the “size” of a circuit C the number of nodes and denote it |C|. We define the
value of C on x ∈ {0, 1}n as the result of substituting the ith bit of x for each gate labelled with xi and then
inductively evaluating each logic gate until the output gate has a value; denote this value by C(x).
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Definition 3 (Bounded-Size Circuit Families). Let T : N → N be a gate-counting function. A T (n)-size
circuit family is a sequence of circuits {Cn}n∈N where ∀n

• Cn has n inputs

• |Cn| ≤ T (n)

Fix a language L ⊆ {0, 1}∗. We say that L has T (n)-size circuits and denote this by

L ∈ SIZE[T (n)] ⇐⇒ ∃ a T (n)-size circuit family {Cn}n∈N such that ∀x ∈ {0, 1}n Cn(x) = L(x)

Just as with machine-based models, we consider any polynomial gate-bound to be feasible.

Definition 4 (“Small” Or “Efficient” Circuits — 6.5 of [AB09]). P/poly =
⋃

c∈N SIZE[nc]

Given that modern CPUs are built of programmable logic arrays computing a useful collection of 64-bit
Boolean functions, it is no surprise that we can simulate machines by circuits.

Theorem 1 (Simulation of TMs By Circuits).
P ⊂ P/poly

This allows a reformulation of P vs NP which may seem more tractable: is NP ⊂ P/poly? That circuit
lower bound is stronger than P ̸= NP. The hope was that, by thinking of the deterministic class as circuits, we
could avoid relativizing proofs by using more “details” of computation than just efficient simulation lemmas.
Towards this end, Kannan proved the following.

Theorem 2 (Slicewise Circuit Lower Bounds for PH — Theorem 2 of [Kan82]).
∀k ∈ N ∃Lk ∈ PH Lk ̸∈ SIZE[nk]

Lemma 1 (Circuit Lower “From Above” — Lemma 4 of [Kan82]).
NEXPNP ̸⊂ P/poly

Kannan’s arguments mixed combinatorics with diagonalization against circuits. Even so, the above
results are relativizing [Wil85]. Nearly a decade later, appropriate tools were invented to bypass the barrier.

2.2 Non-Relativizing Ingredient: Algebrization
The following non-relativizing equivalence was a breakthrough in complexity theory.

Theorem 3 (8.19 of [AB09], originally [Sha92; Lun+92]).
PSPACE = IP

The hard direction was showing PSPACE ⊆ IP. Relativization explained the difficulty involved, because
∃O PSPACEO ⊈ IPO [FS88]. Thus, to show PSPACE ⊆ IP, a non-relativizing technique was required.
Roughly speaking, the idea was to transform a circuit into a polynomial, and use the fact that claims about
the evaluation of polynomials can be efficiently verified using random bits. Our notes do not cover this proof,
because it is an important part of the standard complexity theory class; see Section 8.3 of [AB09].

So, as of 1992, the question remained: we had a non-relativizing inclusion but no separation. How do
we “hijack” this to prove separations? The conditional collapse below follows by observing that the prover
in the protocol witnessing PSPACE ⊆ IP can be implemented in PSPACE.

Theorem 4 (Karp-Lipton Style Conditional Collapse, 8.22 [AB09]).

PSPACE ⊂ P/poly =⇒ PSPACE = MA
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3 MA-EXP Does Not Have Efficient Circuits
We combine the two ingredients introduced above to get a separation. Unconditionally, we have Kannan’s
circuit lower bound for NEXPNP. We use the Karp-Lipton style theorem to move the hard language from
Kannan’s bound “down” into MA-EXP.

Theorem 5 ([BFT98]).

MA-EXP ̸⊂ P/poly

Proof. 1. Assume towards contradiction that MA-EXP ⊂ P/poly

2. Unconditionally, PSPACE ⊆ EXP ⊆ MA-EXP

3. Combining the above with Theorem 4, PSPACE ⊂ P/poly =⇒ PSPACE = MA

4. Unconditionally, NPNP ⊆ PSPACE

5. Therefore, under our assumption, NPNP ⊆ MA

6. Padding up and recalling Lemma 1, NEXPNP ⊆ MA-EXP ⊂ P/poly =⇒ ⊥

Our next note will certify that MA-EXP ̸⊂ P/poly is indeed non-relativizing.
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