CS 599: The Meta-Complexity Frontier, Fall 2023
Problem Set #3

Due: 5:00PM, Friday, December 21, 2023.

Homework Policies

e Submit your completed assignment by email to marco[at]lntime[dot]org . Please include the string

“CS599PS2” somewhere in your subject line.
Solutions must be typeset, e.g., using I TEX or Microsoft Word.

You are encouraged to collaborate on the homework problems with each other in small groups (2
- 3 people). Collaboration may include brainstorming or exploring possible solutions together on a
whiteboard, but should not include one person telling the others how to solve a problem. You must
write up the solutions independently (in your own words) and acknowledge your collaborators
at the beginning of the first page.

You may read papers and other outside sources to help you solve these problems. If you do so, you
must cite and acknowledge any sources and write the solutions in your own words.

You may freely use without proof any results proved in class, in lecture notes posted on the class
webpage, or in the main body of the texts assigned as reading. Note that this excludes results that
appear in the texts as problems and exercises. You may, of course, use such results but you have to
prove them first.

To help your instructor calibrate the length and difficulty of future assignments, please include with
each problem an estimate of how long it took you to solve it.

Please start early! The problems are presented roughly in the order of the course content they corre-
spond to, so you may get started on the first few problems as soon as the assignment is released. Late
assignments will receive credit only with prior permission of the instructor.

Part of this and subsequent assignments will be to familiarize yourself with definitions of complexity
classes and concepts that did not come up in class. These items will always be defined in our “local”
complexity zoo, linked from the Resources section of our course webpage.

1  Warm-up Inside a Theory of Bounded Arithmetic

Hear you will prove a few basic facts about arithmetic “inside” a particularly weak fragment of Peano
Arithmetic. We’ll specify the theory IA( which is single-sorted and thus more succinct than what we have
seen in class so far. First, some basic definitions from logic:

1.

The vocabulary of arithmetic is L4 = {0,1,+,-,=,<} where 0 and 1 are constant symbols, +, - are
binary function symbols, and =, < are binary relation symbols.

The L4-formulas are built by induction on syntax from symbols in £4 with the logical connectives
{A,V,~, =}, quantifiers {V, 3}, an infinite set of variables x1, s, ..., and parentheses (see [tem 0.3).

An L 4-structure M is a set U (the universe) together with interpretations of all the symbols:


https://projecteuclid.org/ebooks/perspectives-in-logic/Metamathematics-of-First-Order-Arithmetic/Chapter/Preliminaries/pl/1235421929

e For the constants 0 and 1, distinguished elements 0M,1M € U
e For the relation <, a set of pairs R« € U x U
e For the functions + and -, mappings +, .M : U x U — U.
Notice that these interpretations may have nothing whatsoever to do with the standard meaning we

ascribe to the symbols of L 4; these structures are merely suitable for evaluation of £ 4-formulas. The
only constraint is that = is always interpreted as the actual identity relation on U (see Item 0.4).

4. An L4-structure M satisfies a formula ¢ — denoted M = ¢ — if (intuitively) “p is true in M.”
Satisfaction can be defined formally using induction on the parse tree of ¢ (see Item 0.6) or a two-
player game (see Section 2). A model M satisfies a set of formulas ' if M |= ¢ for every p € T'. We
also say “M is a model of ¢’ when M satisfies .

5. Let ' be a set of formulas, and let ¢ be a formula. If every model of I is also a model of ¢, we say
that ¢ is a logical consequence of I' — denoted (unfortunately) I' |= .

6. Finally, a theory is (semantically) a set of formulas 7 closed under logical consequence. We could also
define a theory syntactically by closing a set of formulas under deduction (see Item 0.11).

Now consider the following set of formulas, our basic axioms:

Bl. (Vo) +1#0

B2, (Vz)(Vy) z+1=y+1—z=y
B3. (Vo) 2+ 0=2x

B4. (Vz)(Vy) z+(y+1)=(z+y) +1
B5. (Va) z-0=0

B6. (Va)(Vy) z- (y+1)=(z-y) +a
B7. (Vz)(Vy) [ <yAy <yl 2 a=y
B8. (Vo)(Vy) z <z+y

We could define a theory using axioms B1-8 alone, but it would be extremely weak — able to prove
statements like (Vz)(Vy) © +y =0 — 2 = 0 Ay = 0, but not much more. To strengthen the theory, we
consider adding an infinite collection of formulas — a scheme — to the axioms.

Definition 1 (Induction Scheme). For ® a set of formulas the ®-Ind axiom scheme is the set of formulas

[p(0) A (Vo) [p(2) = p(x + 1)]] = (V2) p()
where ¢ € ©.

The theory of Peano Arithmetic allows induction over any formula of £ 4, and so is too powerful for our
computationally-limited purposes. To build theories related to complexity classes, we restrict the formulas
® over which induction is allowed so that proofs cannot construct objects that are “too big.”

Definition 2 (Bounded Quantifiers). If the variable = does not occur in the term ¢, then 3z < tp stands for
Jz(x < tAp) and Vo < tp stands for Vo (z < t — ¢). Quantifiers that occur in this form are called bounded
and a bounded formula is one in which every quantifier is bounded.

We can now define our theory: powerful enough to be interesting, weak enough to use as a running
example in this problem set and illustrate some of the limitations of bounded arithmetic and motivation for
stronger theories.

Definition 3 (Theory IAg). Denote by Ay the set of bounded formulas over £4. The theory IAg has as
axioms B1-B8 and Ag-Ind.


https://projecteuclid.org/ebooks/perspectives-in-logic/Metamathematics-of-First-Order-Arithmetic/Chapter/Preliminaries/pl/1235421929
https://projecteuclid.org/ebooks/perspectives-in-logic/Metamathematics-of-First-Order-Arithmetic/Chapter/Preliminaries/pl/1235421929
https://arxiv.org/abs/2212.01658
https://projecteuclid.org/ebooks/perspectives-in-logic/Metamathematics-of-First-Order-Arithmetic/Chapter/Preliminaries/pl/1235421929

IA can prove many basic facts about number theory, cannot prove that z!'°87 is a total function, and
seems unable to prove that there are arbitrarily large prime numbers, even though primality is a definable
predicate (Definition 4 below) of TAg.

*Problem: Argue that the following are theorems of IAjy. You may describe a proof in a Hilbert system
(see Item 0.10) or a winning strategy for Elouise in an arbitrary model of IAg (as in class). Be precise about
how induction is used. Hint: the theorems build on each other.

1. Addition is commutative: (Vz)(Vy)z +y=y+ =z
2. Predecessor: (Vz)r #0— Jy<z(z=y+1)
3. Difference: (Vz)(Vy)(Fz)[zx+z=yVy+z=1x)

2 Relating /A, to Complexity Classes
First we give a theorem that quantifies just how “bounded” I'Ag is. Informally, it cannot “map” free variables
(V3 quantifier prefix) to a number that is “too big” compared to the inputs.

Theorem 1 (Parikh’s Theorem). Suppose the formula (Vx1)(Vaz) ... (Vzr)(Fy)e(z1, ..., x5, y) with all free
variables displayed is a theorem of IAg. Then, there is a term t of L involving only the x variables such
that (Vx1)(Vza) ... (Var) By < t)o(z,. .., 2k, y) is also a theorem of IAg.

In class, we saw a (two-sorted) language of arithmetic expanded with all polytime function symbols.
When is it “legitimate” to expand a language with predicate symbols? One answer is, if we could have
written the predicate already using symbols in the language — then the new symbol can be treated as an
abbreviation.

Definition 4 (Definable Predicates). Let T be a theory with vocabulary £4. A k-ary predicate symbol
P(z1,...,z) not in L4 is ®-definable in T if there is an £4-formula (21, ...,2;) in ® such that

P(zy,...,z) <= @(x1,...,2%)
This is called the defining axiom for P.
The related complexity class of interest is a brittle analog of the familiar polynomial-time hierarchy.

Definition 5 (Linear Time Hierarchy). Let NLinTime denote time O(n) on a nondeterministic k-tape Turing
Machine. Then ¥4" = NLinTime and, inductively equipping previous layers of the hierarchy with an oracle,

£l = NLinTime™"
ir1 = NLinTime

and '
LTH = ] =™
i€N
This complexity class is closely related to IA.

Theorem 2. LTH is exactly the set of Ag-definable predicates, where the Turing Machines get binary strings
encoding numbers as inputs and formulas get the corresponding numbers as assignments to their free variables.

xProblem: Sketch a proof (outside IAg) of theorem 2. Here are some assumptions and hints.

e Assume that binary sequences can be coded in IAg, so that predicates like Bcount(z) = “the number
of ones in the binary representation of x” are Ag-definable, as well as extraction of specific bits and
indexing into arrays of bitstrings. Substantial “bootstrapping” is required to obtain these definitions in
IAg — out of scope for this class. So, just assume that any function on bitstrings in AC® is Ag-definable.

e Hint: the base case of one direction is Ag-def inability of every language in NLinTime.
e Hint: be inspired by the proof of the Cook-Levin theorem.

e Hint: the other direction is by structural induction on Aq formulas. Use Parikh’s theorem.


https://projecteuclid.org/ebooks/perspectives-in-logic/Metamathematics-of-First-Order-Arithmetic/Chapter/Preliminaries/pl/1235421929

	Warm-up Inside a Theory of Bounded Arithmetic
	Relating I0 to Complexity Classes

