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Abstract

Determining the complexity of circuit minimization is a fundamental and longstanding open problem.

To better understand the landscape of minimal circuits, we can ask: given a Boolean function f and

complexity measure µ, is there a structural characterization of the µ-optimal set of circuits computing

f? For some functions and measures — such as n-bit OR and DeMorgan circuit size — the question is

easy. For other functions — such as the n-bit XOR function and DeMorgan circuit size counting NOT

gates — such characterization seem to require a deep understanding of circuit lower bounds for XOR

proved via gate elimination (Kombarov, 2011).

In this paper, we show that even when NOT gates are free, minimal XOR circuits are “shaped like”

binary trees of fan-in 2 XOR sub-circuits. As a corollary, we obtain an efficient algorithm for testing if a

given circuit is an optimal XOR circuit. Our argument must carry out the intricate case analysis of gate

elimination quite differently from Kombarov’s, to handle the additional flexibility afforded by free NOT

gates. We formalize the simplification steps used by gate elimination as a graph rewriting system, and

demonstrate that our system is “well behaved” via a partially machine-checkable proof; this perspective

on gate elimination may be of independent interest.

We are also motivated by the recent result that the Partial Function Circuit Minimization Problem is

hard, assuming the Exponential Time Hypothesis (Ilango, 2020). That proof leveraged a characterization

of the optimal circuits for n-bit OR and a novel perspective on gate elimination. By characterizing the

structure of n-bit XOR, we take a step towards extending the proof of hardness to total MCSP. Crucially,

previous results about the structure of optimal XOR circuits are incompatible with Ilango’s proof — the

implicit complexity measure must ignore NOT gates.
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1 Introduction

Circuits model the computation of Boolean functions on fixed input lengths by acyclic wires between atomic

processing units — logical “gates.” To measure the circuit complexity of a function f , we fix a set of gates

B — called a basis — and count the number of B-gates required to compute f . This work studies circuits

over the DeMorgan basis: fan-in 2 AND, fan-in 2 OR, and fan-in 1 NOT gates. We do not restrict the

wiring pattern. Basic questions have been open for decades; we cannot even rule out the possibility that

every problem in NP is decided by a sequence of linear-size DeMorgan circuits.1 Despite this, the ongoing

search for circuit complexity lower bounds has fostered rich and surprising connections between cryptography,

learning theory, and algorithm design [HS17; GIIKKT19; San20; CKLM20; RS21; HIR23]. The Minimum

Circuit Size Problem (MCSP, [KC00]) appears in all of these areas, asking:

Given an n-input Boolean function f as a 2n-bit truth table, what is the minimum s such that

a DeMorgan circuit with s gates computes f ?

The existential question — do functions that require “many” gates exist? — was solved in 1949: Shannon

proved that almost all Boolean functions require circuits of near-trivial2 size Ω( 2
n

n ) by a simple counting

argument [Sha49]. The current best answer to the explicit question — is such a hard function in NP? —

is a DeMorgan circuit lower bound of 5n− o(n), proved via Gate Elimination [IM02; ILMR02]. This is far

from the popular conjecture that NP-complete problems require superpolynomial circuit size.

The algorithmic question — is MCSP NP-hard? — remains open after nearly fifty years [Tra84], but

recently many natural variants of MCSP have been proven NP-hard. For instance, DNF-MCSP [Mas79],

MCSP for OR-AND-MOD Circuits [HOS18], and MCSP for multi-output functions [ILO20] are now known to

be NP-hard. Furthermore, MCSP for partial functions [Ila20] is hard under the Exponential Time Hypothesis

(ETH), later extended to unconditional NP-hardness [Hir22]. Curiously, Ilango’s proof of ETH-hardness for

partial MCSP combined a novel perspective on Gate Elimination with a characterization of the set of optimal

circuits for the n-bit OR function [Ila20]; this is one motivation for the present work.

We study the design question — given a Boolean function f , what is the shape of every optimal circuit

computing f? For some functions, this is easy to answer: minimal circuits for n-bit OR are simply trees

of (n − 1) OR gates. For even slightly more complex functions — like XOR — characterizing the minimal

circuits seems to require intricate case analysis of Gate Elimination. Previous work showed that, when NOT-

gates count towards the complexity measure, optimal XORn circuits are binary trees of XOR2 sub-circuits

[Kom11]. This was encouraging, but the complexity measure in Ilango’s proof must ignore NOT gates — see
1See discussion of Kolmogorov’s Conjecture on page 564 of [Juk+12].
2From using a lookup table.
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Section 1.3 for discussion of the incompatibility. So, we characterize the set of optimal XOR circuits when

NOT gates are free.

Main Theorem (Summary of Theorem 11). Optimal (¬)XOR circuits over the DeMorgan basis partition

into trees of (¬)XOR2 sub-circuits — even when NOT gates are free.

This is interesting because (1) XOR is a key ingredient in many complexity lower bounds. (2) Along the

way, we show that a natural formalism for circuit simplification is “well behaved” — the order of elimination

steps does not matter (Theorem 27). This may be of independent interest. (3) Characterizing the set of

optimal circuits for XOR when NOT gates are free would be the first step in a proof that total MCSP is

NP-hard via Reverse Gate Elimination.

An immediate application of our main theorem is an efficient algorithm for optimal XOR-circuit iden-

tity testing (Corollary 16). Efficient algorithms for other circuit identity testing problems have dramatic

consequences. An efficient deterministic algorithm for determining whether an arithmetic circuit computes

the zero polynomial, the Polynomial Identity Testing problem, would imply strong circuit lower bounds

[KI03]. Similarly, determining whether a circuit does not compute the constant 0 function, CircuitSAT, is a

well-known NP-complete problem and even slight improvements over exhaustive search yield breakthrough

complexity separations [GJ79; Wil10]. Perhaps because we can only identity-test for an optimal and not an

arbitrary XOR circuit, we do not obtain new lower bounds from this algorithm. We hope that future work

can extract more consequences from the highly constructive gate-elimination proofs of certain circuit lower

bounds.

1.1 Gate Elimination & Hardness of Partial MCSP

Gate Elimination is the most general technique known for proving circuit lower bounds. In particular, the

current unconditional lower-bounds known for functions in B2 or U2 basis are proven using Gate Elimination,

and this technique can leave rooms for improvements. For example, the 5n− o(n) lower-bound for strongly

two-Dependent functions over the U2 basis by Iwama and Morizumi [IM02] was an improvement from the

4.5n− o(n) lower-bound by Lachish and Raz [LR01] under the same setting. By fixing some input bits of a

function f we can simplify circuits computing f . This can be useful for minimization: depending on f , the

resulting circuit and the function it computes may satisfy some desirable properties, but the original circuit

has at least as many gates as were removed.

Indeed, the heart of the hardness proof for Partial MCSP applies a gate elimination argument but in a

reversed manner. Specifically, Reverse Gate Elimination flips the perspective of Gate Elimination as follows:

given an optimal circuit, we add variables and gates to it circuit in a way that is “dual” to how these gates
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would be eliminated if we were to apply standard gate elimination on the “extended” resulting circuit (i.e.

applying gate elimination on the added gates will result in the original circuit). Formally, g is a k-Simple

Extension of f if optimal circuits for g can be obtained from optimal circuits of f by adding exactly k gates

and variables via Reverse Gate Elimination. This induces a natural computational problem: given the truth

tables of two Boolean functions f on n variables and g on n + k variables, is g a k-Simple Extension of f?

One can easily notice that this decision problem can be efficiently solved given access to a MCSP-oracle. This

observation gives rise to a MCSP-hardness proof framework, i.e. if one can show that deciding whether g is

a k-Simple Extension of f is NP-hard, then MCSP is also NP-hard. Indeed, this framework was implicitly

used in Partial MCSP’s hardness proof.

In particular, the proof of hardness for partial-MCSP reduces an ETH-hard problem to the k-Simple

Extension Problem for OR-function, which then reduces to partial-MCSP. Under ETH, the 2n×2n Bipartite

Permutation Independent Set Problem (BPIS, [LMS18]) cannot be solved faster than brute-forcing over all

n! permutations. Because optimal ORn circuits are simply binary trees of fan-in 2 OR gates with exactly

n leaves, there are at least n! many optimal circuits — one for each permutation of the n input variables.

A more concrete discussion regarding how the hardness proof aligns with the Simple Extension Framework

can be found in Section 1.3.3 of [Ila20].

For a high-level idea, the reduction works as follows: given a yes instance of 2n× 2n BPIS, the reduction

outputs the truth-table of a partial function that is a Simple Extension of OR4n which can be associated

with a permutation from the input instance. Thus, the hardness of partial MCSP comes from the fact that

deciding whether a given partial function is a Simple Extension of ORn is hard since one must “complete” the

partial function and it cannot be done faster than brute-forcing over all possibilities given by the permutation.

Furthermore, by definition, an optimal circuit computing a k-Simple Extension of OR4n must also be a binary

tree of 4n+ k leaves with 4n− 1 internal nodes labeled as OR gates, which is exactly the desired number of

OR gates required for an optimal circuit computing OR4n, within it. In other words, a key step of showing

the output partial function is the correct k-Simple Extension of OR4n requires arguing what the structure

of optimal circuit computing it must have. Therefore, knowing the structure of optimal circuits computing

the OR-function is crucial for the hardness proof (for full details, see the proof of Lemma 16 in [Ila20]).

Could one use the same reduction to get a hardness result for total MCSP? No: optimal circuits for ORn

are so well-structured that the problem of deciding whether a total function is a Simple Extension of ORn

is actually easy (see the discussion in Section 1.2.2 in [Ila20]). ORn only requires a read-once formulas —

each of the n variables is read exactly one and each internal gate has fan-out 1. Simple Extensions of ORn

are also read-once formulas, and learning whether a given Boolean function is a read-once formula is easy

[AHK93; GMR06].
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This motivates our work. Understanding the structure of optimal circuits for more complex functions

whose lower-bounds are well-known, such as XORn, the parity of n Boolean variables [Red73; Sch74], could

provide a missing ingredient for proving hardness of MCSP and related problems via reverse gate elimination.

1.2 Related Work

Circuit Lower-Bounds Via Gate Elimination. In 1974, Schnorr showed that MODn
3,r — the function

that outputs 1 if the sum of the n input bits mod 3 is equal to r — has circuit complexity ≥ 2n − 4. The

inductive argument shows that, in an optimal circuit for MODn
3,r, there is some xi for which substituting in

0 and simplifying eliminates at least 2 gates. The resulting circuit computes MODn−1
3,r and thus the size of

optimal circuits for MODn
3,r must have at least two more gates than MODn−1

3,r . He then extended this Ω(2n)

lower bound to other functions which have the same structural properties as MODn
3,r [Sch74].

Schnorr also showed that any optimal circuit computing XORn must have a size lower-bound of 3(n− 1).

The proof of this lower-bound leverages the fact that at the bottom level of the optimal circuit, a variable

must be connected to two different gates, and one of those two must connect to a third gate that is not the

output gate. Thus, by the nature of gate elimination, there must exist a setting for this variable such that

all of the three aforementioned gates are eliminated. Then, the lower-bound proof follows via an inductive

argument on the number of variables n. When NOT gates also contribute to circuit size, Red’kin showed

that the size of an optimal circuit computing XORn is 4(n− 1) [Red73].

Finally, there has been recent progress showing slightly better than 3n explicit lower bounds via Gate

Elimination [FGHK16; LY22]. Stronger lower bounds achieved from Gate Elimination require more than

single bit substitutions and counting gates. Advanced proofs track more complicated complexity measures,

such as the sum of the number of gates and the number of dependent inputs, and substitute whole sub-

functions. For example, [Sto77] achieved a Ω(2.5n) bound by substituting two variables for arbitrary functions

and [DK11] tracked the number of inputs as well as the number of gates which yielded a lower bound of

3n− o(n). For more recent results see Section 2 of [GHKK18]. For a thorough survey of classical results, see

the textbook by Wegener [Weg87].

Limits of Gate Elimination Technique. Progress has been slow in proving circuit lower-bounds using

Gate Elimination technique, regardless of the fact that it has been the most successful technique known so far

to prove unconditional Boolean circuit lower-bounds. In the nearly 50 years since Schnorr’s 2n lower bound

proof for MODn
3,r, the best unconditional lower bound is just smaller than 3.1n [LY22]. This led researchers

to speculate that the technique could not prove nonlinear bounds [Weg87]. Recently, this intuition has been

proven true by Golovnev, Hirch, Knop, and Kulikov. Namely, they constructed functions that are “resistant"
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to gate elimination: any constant number of substitutions reduces their circuit complexity measure only by

a constant, and thus, Gate Elimination cannot be used to prove lower-bounds better than 5n [GHKK18].

They also construct circuits which are resistant with respect to slightly more advanced complexity measures

like those used in [DK11]. Thus, in order to prove stronger bounds, either new techniques will need to be

developed, stronger assumptions must be made, or both. For example, Golovnev, Kulikov, and Williams

have developed new unrestricted depth-three circuit reductions by assuming a hypothesis about DeMorgan

formulas [GKW21].

However these limits are orthogonal to our work. We use Gate Elimination indirectly, to extract the

properties of optimal circuits whose lower-bound was proven using Gate Elimination as well as the ultimate

“shape” that all such optimal circuits share.

1.3 Comparison to Prior Study of Optimal XOR Circuits

We recall that under a different complexity measure — where NOT gates also contribute to circuit size —

this problem has already been studied and a similar result holds. Namely, Kombarov showed that optimal

circuits computing XORn when NOT gates count must consist of n − 1 non-intersecting (¬)XOR2-circuits

[Kom11], and furthermore, the one shape that all such optimal circuits share looks like a “binary tree” of

blocks where each looks like one of 1a and 1b below. We will discuss the main ideas of the Kombarov’s proof

technique later in this section, but in short, the proof exploits the fact that XOR is downward self-reducible

to conduct an inductive argument over the number of input variables. Furthermore, given the 4(n−1) lower

bound by Red’kin, the proof utilizes Gate Elimination to argue that each block must look like either 1a

or 1b since otherwise, the lower bound will be violated. Our proof exploits the same ideas, but we use a

rewriting system to handle the flexibility of the free NOT gates which is the main difference between our

complexity measurement compared to the one used by Kombarov. We will also provide a quick discussion

on our motivation for the choice of complexity measurement in this work at the end of this section.
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∧

¬

∧∨

x1 x2

(a) XOR2 block

∨

¬

∨∧

x1 x2

(b) ¬XOR2 block

(c) (¬)XOR8 optimal circuit shape which consists of 8−1 = 7 non-intersecting blocks
where each is either Figure 1a or 1b

Figure 1: An example of the “true shape” of optimal circuits computing XORn proved in this work and also
in [Kom11]

Figure 2

Furthermore, Kombarov extended this result to other complete bases, i.e. both the complexity and

the structure of optimal circuits for XOR were established on these bases [Kom18]. This work and ours

helps unify different bases and circuit complexity measurements — in all settings, the shape of minimal

XOR circuits remains the same. Progress on other bases continues. Recently, a generalized lower-bound

result on Boolean linear functions on arbitrary complete bases was introduced by Red’kin [Red20], and

later, Kombarov expanded the study of circuit lower-bounds for XOR to the regime of infinite fan-in circuits

6



[Kom22].

An overview of the proof technique in [Kom11]. The XOR circuit structure proof by Kombarov pro-

ceeds via case analyses and induction on gate elimination. At a high level, it uses the following observations.

• If ∧, ∨, and NOT-gates for each block are not “wired” together as shown in Figure 1a or 1b, then the

optimality of the XOR-circuit size will be violated. This can be shown using case analysis on a Gate

Elimination argument where one argues that if the gates are not placed correctly, then there exists a

one-bit restriction will eliminate too many gates which contradicts the circuit-lower bound by [Red73].

• The XOR function is downward self-reducible, i.e. given a circuit computing XORn, a one-bit restriction

yields a new circuit computing XORn−1. This observation is useful for an inductive argument to argue

that the ultimate shape of a circuit computing XORn must look like a binary tree.

We exploit the same observations, using a rewriting system rather than direct case analysis to save

“nesting depth” of cases and handle the additional flexibility in circuit structure afforded by free NOT gates.

Therefore, the ultimate shape of optimal XOR-circuits is determined by how we place the ∧ and ∨-gates

only, although it seemed plausible to believe that one can take advantage of the free NOT-gate resources to

shape the circuit differently. This raises the obvious question,

Should NOT Gates be Costly? What are the consequences of giving away NOT gates for free? It turns

out, both complexity measures are well-motivated.

• On the one hand, the number of NOT-gates plays an important role in the study of learning the exact

identification of functions computed by circuits/formulas with queries — a research topic that has

been active since the 90s [AHK93; BCKT94; BHH95; HPRW96]. Fairly recently, a result by Blais et

al showed the significance of NOT-gates in learning the exact identify of the function computed by

a given circuit [BCOST14]. Specifically, they upper-bound the number of NOT-gates that the given

circuit contains where the learning task still remains “easy.” Once that threshold is slightly passed, the

task is “hard” as the number of required queries becomes exponential. Thus, charging for NOT gates

is essential in this setting.

• On the other hand, NOT-gates do not seem like a primary contribution to circuit lower bounds.

Specifically, Schnorr’s lower bound for XORn is 3(n− 1) without counting NOT-gates compared to the

4(n − 1) lower bound by Red’kin. Furthermore, the proof of Schnorr is much less complicated than

Red’kin’s as the latter required deep case analyses to argue where NOT-gates can be used. This means
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that ignoring NOT-gates can simplify the lower bound proofs which could help to improve consequences

of (indirect) gate elimination.

Simple Extension Requires Free NOT Gates. Our motivation for identifying the one true shape of

optimal XOR-circuits is to study hardness of the XOR Simple Extension problem. Informally, a Boolean

function g is a Simple Extension of another Boolean function f if we can obtain an optimal circuit Cg

computing g by adding exactly k costly gates and variables to an optimal circuit Cf computing f . Counting

NOT-gates in our measurement would break the definition of Simple Extension because NOT is a unary

function; it cannot be “spliced” into a wire to add a single variable at the cost of one gate.

1.4 Proof Techniques

The proof of Theorem 11 has two parts. First, we formulate circuit simplification as abstract graph rewriting

— a general notion of graph transformation according to fixed rules. We show that circuit simplification is

a convergent abstract rewriting system; this means the order of elimination steps does not matter: the same

restriction always simplifies to a unique circuit normal form after gate elimination. The technical bulk of

this proof is machine-checkable, because it follows from running the Knuth-Bendix algorithm on a system

of equations that describe gate elimination over the DeMorgan basis. The contribution is conceptual: we

borrow ideas and results from Theory B to show that a basic tool of Theory A is “well behaved”. This

perspective on gate elimination proofs could be of independent interest.

Second, we carry out an elementary but intricate case analysis of restricting and eliminating gates from

optimal XOR circuits. Essentially we extract more information from Schnorr’s lower bound, which can be

seen as reasoning about “templates” that must be found in any optimal XOR circuit. We push this process

to the limit, fully characterizing the “shape” of all such circuits. Convergence of our circuit simplification

system allows us to both work with circuits in convenient normal forms and avoid any case analysis that

would arise from varying the order of simplification steps.

1.5 Open Problems

An immediate open problem is whether we can establish the structure of optimal circuits for other functions

whose lower-bounds are known. For instance, in the regime of DeMorgan formulas, we have a lower bound

of Ω(n2.5−o(1)) for Andreev’s function [And87] 3. Thus, it would be interesting to see a how much this lower

bound would change in the circuit regime as well as the structure of optimal circuit computng Andreev’s
3this lower bound was later improved to Ω(n3−o(1)) by analyzing the shrinkage exponent of DeMorgan formulas [PZ93;

IN93; sta98]
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function.

Lastly, can we use Theorem 11 to address an open problem proposed by Ilango in [Ila20], i.e. can we

prove hardness of total MCSP via the k-Simple Extension problem for XORn?

1.6 Paper Outline

The organization of the rest of the paper is as follows. In Section 2, we describe circuits as term graphs and

gives some basic properties of XOR. In Section 3, we explain how to formulate proofs using Gate Elimination

as term graph rewriting (a more detailed exposition can be found in Appendix E) followed by a demonstration

via Schnorr’s lower-bound for XOR. Lastly, in Section 4, we prove our main Theorem 11 and then apply it

to speed up optimal XOR circuit identification.

2 Preliminaries

2.1 Circuits as Term Graphs

We study general circuits over the DeMorgan basis B = {∧,∨,¬, 0, 1} of Boolean functions: binary ∧ and

∨, unary ¬, and zero-ary (constants) 1 and 0. Circuits take zero-ary variables in X = {x1, x2, . . . , xn} for

some fixed n as inputs. Usually, circuits are described as DAGs with nodes labeled by function symbols

or variables and edges as “wires” between the gates. Here, to apply results from term graph rewriting, we

describe circuits as hypergraphs, tuples C = ⟨VC , EC , labC , attC⟩ where VC and EC are finite sets of vertices

(or nodes) and hyperedges, labC : EC → B∪X is an edge-label function recording the type of each edge, and

attC : EC → V ≤3
C is an attachment function which assigns a non-empty string of nodes to each hyperedge

e such that | attC(e)| = 1 + arity(labC(e)). In this setting, hyperedges represent logic gates and nodes are

“connection points” on the “circuit board” between gates.

2.2 (¬)XORn : The Parity Functions

We define the parity functions XORn formally as:

Definition 1. For an n bit input x⃗, we define:

XORn(x⃗) =


1 if an odd number bits of x⃗ are 1 and,

0 otherwise.

Observe this definition extends XORn to n = 1 where XOR1(x) ≡ x. While XORn is often defined starting

9



at n ≥ 2 [Weg87; Red73; Kom11], this deviation is not unnatural and will prove convenient for our inductive

arguments. For the rest of the paper, (¬)f means “f or ¬f ” where f is a Boolean function. We now give

some basic facts about (¬)XORn that are immediate consequences of the definition above.

Fact 2 ((¬)XOR is Fully DSR). XORn is fully downward self-reducible, i.e. for any input x ∈ {0, 1}n, any

non-empty sets S and T partitioning [n],

XORn(x) = XOR2(XOR|S|(xS), XOR|T |(xT ))

where xS = {xi : i ∈ S} and xT = {xi : i ∈ T}. Furthermore, this means for any partial assignment α⃗S of

variables in xS, XORn(x)|xS=α⃗S
= (¬)XOR|T |(xT ). The same is also true of ¬XORn(x)

Fact 3 (All Subfunctions of (¬)XOR are Non-Degenerate). (¬)XORn not only depends on all of its inputs

but it is also maximally sensitive, i.e. for all i ∈ [n], for all assignments α, (¬)XORn(α) ̸= (¬)XORn(α⊕ei).

3 Well-Behaved Circuit Simplification

Proofs by gate elimination often repeat the following argument to show that a circuit C has property P.

1. Assume that C does not have property P.

2. Select a variable xi and constant α for substitution {xi 7→ α} using ¬P and the structure of C.

3. Simplify C under the substitution {xi 7→ α}, to obtain a constant-free circuit C ′.

4. Argue that a critical property P ′ of C ′ implies a contradiction, therefore C must have property P.

We formalize the simplification procedure used in step three above. Usually, this is not necessary: the

critical property is something like P ′ = “simplification eliminated four gates” and it is clear that every

sequence of simplification steps reaches a circuit C ′ with property P ′. However, we must assert post-

simplification properties like P ′ = “input xj has fanout one,” where xj was the sibling of xi in C. These

more delicate properties are not so easily seen to hold after every terminated simplification.

To avoid ad-hoc arguments and lengthy case analyses, we develop a convergent simplification procedure

S for circuits: every valid run of S on C with α substituted for any input xi terminates with the same circuit

C ′. Therefore, to carry out the argument template above, one need only exhibit a particular run of S and

argue that the resulting C ′ has critical property P ′.
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3.1 Rewriting Systems: Definitions & Desiderata

An abstract rewriting system is just a set of objects A together with a binary relation → on A called the

rewrite relation. We give a system where A contains Boolean circuits over the DeMorgan basis and C → C ′

holds when C simplifies to C ′ via a single step of gate elimination. We’ll first introduce some terminology

about abstract rewriting systems as well as define some desirable properties. For elements a, a′ ∈ A, write

a
∗→ a′ to mean that there is a finite path of rewrite steps from a to a′, and say that a is in normal form if

there is no b such that a→ b.

Definition 4 (Definition 2.1.3 of [BN98]). The rewrite relation → is called

terminating iff there is no infinite path a0 → a1 → . . .

confluent iff for every triple of objects a, b, b′ ∈ A, if a ∗→ b and a
∗→ b′, then there is a c ∈ A such that

both b
∗→ c and b′

∗→ c —

convergent iff it is both confluent and terminating.

3.2 Circuit Simplification: System S

Let A be the set of finite DeMorgan circuits encoded as hypergraphs. Our system S is a special case of Term

Graph Rewriting following [Plu99] and detailed in Appendix E. There are three parts to the system: (1)

hyper-graph morphisms — a notion of pattern matching for sub-circuits, (2) a set of circuit rewrite rules RB

formulated as left- to right-hand pattern pairs (Definition 24), and (3) a procedure for replacing patterns in

circuits (Definition 25). System S is then the binary relation induced by setting C → C ′ when C matches

the left-hand side l of a rule ⟨l, r⟩ and C ′ is the result of substituting pattern r for l in C. We run the

Knuth-Bendix algorithm (Theorem 22) and invoke Corollary 1.7.4 of [Plu99] to show:

Theorem 5. S is a convergent abstract rewriting system.

Definition 6 (Hypergraph Morphism). For hypergraphs G and H, a hypergraph morphism f : G→ H is a

pair of functions fE : EG → EH and fV : VG → VH that preserve

labels for every hyperedge e of G, fE sends e to an edge of H with matching label — labG(e) = labH(fE(e))

and

attachments ∀e ∈ EG f∗
V (attG(e)) = attH(fE(e))

Definition 7 (Pattern & Redux in Circuits). Circuit D is an instance of pattern L if there is a morphism

p : L→ D sending rootL to rootD. Then, given a vertex α in circuit C and a rule L 7→ R, the pair ⟨α,L 7→ R⟩

is a redex if C[α] is an instance of L.
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Algorithm 1 Step of Circuit Simplification System S, defining C → C ′

Require: C is a circuit containing the redex ⟨α,R 7→ L⟩

C1 ← C − {a} where a = res−1(α) ▷ Remove the unique gate with output wire α

C2 ← C1 +R ▷ Disjoint union: rhs of the matched rule with C

C3 ← Identify vertex α with rootR of C2 ▷ Connect R to the appropriate element(s) of C

if γ ∈ R then ▷ Does R reuse a subcircuit?

C4 ← Identify vertex p(γ) with γ of C3 ▷ Yes — connect C to the appropriate element of R

else

C4 ← C3 ▷ R does not reuse any subcircuits — do nothing

C ′ ← Garbage collection: remove all vertices and edges unreachable from rootC4
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Figure 3: Normalizing Rules
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3.3 Circuit Simplification in Action: Warming Up With Schnorr’s Lower Bound

We now prove Schnorr’s lower bound using S. The purpose of this is three-fold. It will

1. demonstrate that S is powerful enough to capture traditional gate elimination arguments,

2. refresh the reader on Schnorr’s argument which lays the foundation for the proof of our Main Theorem,

3. and introduce notions such as costly, topological sorting of gates, successors and fanout that we will

use repeatedly throughout our proofs in Section 4.

On the final point we collect these notions conveniently for the reader in Definition 9 at the end of the

section. We also provide an alternative presentation of this proof in the structured proof format of Lamport

[Lam12] in Appendix A. Due to the case analysis and repeated proofs by contradiction present here and in

the proof of Theorem 11, the alternative format may be easier to verify.

Theorem 8 (Schnorr, [Sch74]). XORn requires 3(n− 1) gates in the DeMorgan basis.

Proof. Let C be an optimal circuit for XORn with n ≥ 2. In the original proof, the goal was to find some

setting of an input node such that gate elimination would remove at least 3 costly gate nodes (∧ and ∨).

Besides notational differences, our goal remains the same. We will find a substitution of an input hyperedge

which causes at least 3 costly gate hyperedges (those labeled ∧ or ∨) to be removed during rewriting.

Following Schnorr we build up the circuit locally around an input by repeated proofs by contradiction; we

perform substitutions and rewrites to contradict C’s optimality or the downward self-reducibility of XORn

thereby forcing C to have the desired structure.

In order to smooth the transition from viewing circuits as graphs to viewing them as term graphs, we

will simply refer to input hyperedges as inputs and gate hyperedges as gates. We describe the substitution

and rewriting steps at a high level. For explicit demonstration of a simplification step, see Appendix B.

We wish to first sort the gates in “topological order". In the traditional view of circuits as DAGs (where

gates are nodes) this notion is straightforward. However, since our gates are edges, we must do so indirectly.

We can sort the vertices of C topologically and, since each node is the result node of a unique edge, we then

order the gates according to their result nodes. From this point on when we refer to sorting inputs or gates

topologically, formally we are doing this process.

Fix a topological order and let h be the first costly gate in C. Under the traditional view of circuits,

we would conclude h has xi (or ¬xi) and xj (or ¬xj) as inputs for some i, j ∈ [n]. Formally, this means

h has two argument nodes whose terms are xi (or ¬xi) and xj (or ¬xj). Before we continue, however, we

streamline our verbiage. We notate the possibility of ¬ gates by defining the shorthand (¬)f to mean “f (or

14



¬f)." If f ′ has an argument node whose term is (¬)f we say that f feeds into f ′ and that f ′ is a successor

of f . Lastly if the label of a gate f is ∧ or ∨ we say f is costly. Combining these allows us to instead say h

is the costly successor of two inputs xi and xj for some i, j ∈ [n] — maintaining the formalism of our system

while being more inline with the original proof.

We assert i ̸= j. Otherwise h ≡ (¬)xi ⋄ (¬)xi for some ⋄ ∈ {∧,∨}. If this occurred, we could apply a

normalizing or tautology rule; rewriting C would then delete h. Since h is a costly gate this would decrease

the the size of C, contradicting C’s optimality.

We now wish to say that xi has fanout at least 2 where we define fanout to the number of costly successors

a gate or input has. Again, assume the contrary: h is xi’s only costly successor. We can then substitute

xj = α where α is set so that during rewriting, we can apply a fixing rule to h. This would mean that C|xj=α

does not depend on xi violating Fact 3 (All Subfunctions of (¬)XOR are Non-Degenerate).

Let f be another costly successor of xi. We can conclude that (¬)f is not the output of the circuit (i.e.

the root node). If it were, then we could substitute xi = β and fix (¬)f during rewriting. This would fix the

output of the circuit so that C|xi = β is constant contradicting Fact 2 ((¬)XOR is fully DSR).

Let f ′ be a costly successor of f and observe h ̸= f ′ since f < f ′ in our topological ordering and h was

the first costly gate in the ordering. We now observe that if we set xi = β so that f is fixed, then during

rewriting we eliminate h (using a fixing or passing rule), f (using a fixing rule), and f ′ (using a fixing or

passing rule). This is because once f is fixed, then the fixing (¬)1 now feeds into f ′. In this case we say that

(¬)1 inherited f ′ as a successor after this rewrite applies, and thus another rewriting rule will apply deleting

f ′.

Thus XORn requires at least 3 more costly gates than XORn−1. Since XOR1 requires zero costly gates,

we have using induction that XORn requires at least 3(n− 1).

Definition 9 (Formalization of Nomenclature). We collect the terms and concepts defined in the proof of

Schnorr (Theorem 8) above.

costly gate refers to a gate whose label is ∧ or ∨.

topological sorting the gates of C: translates to topologically sort the result nodes of C and then order

the gates by their unique result nodes.

f feeds into h if h has an argument node whose term is (¬)f .

h is a successor of f if f feeds into h.

the fanout of f is the number of costly successors of f .
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f inherits h if during rewriting h becomes a successor of f after a rewrite rule is applied.

4 Optimal (¬)XOR Circuit Structure

The 3(n−1) lower bound shown by Schnorr in Theorem 8 has a matching upper bound and the construction

is straightforward: take any binary tree with n leaves labeled x1, . . . , xn where the n− 1 interior nodes have

been labeled by ⊕ and replace the ⊕ nodes with any circuit of size 3 that computes XOR2. Furthermore,

since ¬ gates do not increase circuit size, any circuit for XORn can easily be transformed into an equal size

circuit computing ¬XORn and vice versa. Combining these observations yields the following:

Corollary 10 ([Sch74; Weg87]). A circuit C computing (¬)XORn is optimal if and only if |C| = 3(n− 1).

In this section we will show that binary trees of optimal (¬)XOR2 subcircuits are the only optimal circuits

for computing XORn. Formally,

Theorem 11. Optimal (¬)XOR circuits partition into trees of (¬)XOR2 sub-circuits — even when NOT

gates are free. Formally, for every circuit C with the minimum number of AND,OR gates computing XORn,

there is a partition of the gates of C into (n − 1) blocks together with a multi-labelling of each wire w in C

by tuples ⟨i, t⟩ where t ∈ {in, out, core} describes the role that w plays in block i, such that:

1. Each block is a three-gate XOR2 sub-circuit, with distinguished input, output, and core wires.

2. The input wires of every block are also the output wires of a different block or the input gates.

3. Edge-contraction of C by all core wires results in a binary tree.

The wording of Theorem 11 is versatile; it holds in both the traditional view of circuits and in our

graph rewriting system. Here wires refers to the attachment points between gates, i.e. the nodes in our

hypergraphs. Before we prove our main theorem, however, we first introduce some auxiliary results that we

will repeatedly leverage in our main proof.

4.1 Useful Properties of XOR

Combining Facts 2 and Facts 3, if we substitute for a single variable in a (¬)XORn circuit where n ≥ and

perform rewriting we are guaranteed to get a circuit which computes (¬)XORn−1. Applying the tight version

of Schnorr, Corollary 10, we see that this rewriting cannot remove more than three costly gates. Formally,

Corollary 12 (Elimination Rate Limit for Optimal XOR Circuits). Let C be an optimal circuit computing

(¬)XORn where n ≥ 2. Let C ′ be the circuit after substituting xi = α for some i ∈ [n] and α = {0, 1} and

performing rewriting. We have that |C ′| ≥ |C| − 3 and C ′ is not constant.
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We will repeatedly apply this corollary in our proof: deviation from the prescribed structure will often

allow us to substitute and remove more than three distinct costly gates. The other main source of contra-

dictions will be substitutions and rewrites that disconnect inputs (violating Fact 3) or that leave inputs with

exactly one costly successor. This violates the fact that XORn reads each of it’s inputs twice. We give a

formal proof for completeness.

Lemma 13 ((¬)XOR is Read-Twice (Folklore)). Let C be a normalized optimal circuit computing (¬)XORn

where n ≥ 2. The fanout of every variable C is exactly 2.

Proof. Let C be an optimal normalized circuit computing (¬)XORn for arbitrary n. Suppose there is a

variable xi whose fanout is not 2. There are two cases: (1) the fanout of x1 is 1 and (2) the fanout of x1 is

at least 3.

(1) Assume h is xi’s unique costly successor and let f be the other gate or variable whose successor is

h. Let F be the set of input variables that f depends on (i.e. that are reachable from f) and observe that

xi ̸∈ F . Consider the truth-table of f and observe that f must be a non-constant function of the variables

of F . If it were constant, then we could substitute f with this constant and remove h with a passing or

fixing rule, reducing the size of the circuit and violating optimality. Therefore, there is an assignment of the

variables in F such that if we substitute and rewrite, eventually a constant will feed into h that allows us to

remove it with a fixing rule. This disconnects xi from the circuit, which violates Fact 3 since the circuit is

computing (¬)XORn−|F | but does not depend on xi.

(2) Suppose xi has more than two costly successors. Let h1, h2 and h3 be three of these and without loss

of generality assume these are indexed in ascending topological order. Observe that (¬)h3 is not the output

of the circuit as otherwise we could substitute xi = α to fix h3 and make the circuit constant. This would

violate Corollary 12. Let f3 be the costly successor of h3 and notice that, since h1, h2 and h3 are in ascending

topological order, f3 is a new distinct gate. Thus if we substitute xi = α to fix h3, during rewriting h1, h2, h3

and f3 will all be removed, with a passing or fixing rule applying to f3 after applying a fixing rule to h3.

This violates Corollary 12.

Both cases reach a contradiction and therefore every input has two costly successors in any normalized

optimal circuit computing (¬)XORn.

4.2 Optimal (¬)XORn Circuits Are Binary Trees of (¬)XOR2 Blocks

We now have the tools necessary to prove Theorem 11. The proof will proceed via induction, however most

of the work will be in proving that we can find a block in any XORn circuit which we can “peel off" with

a single variable substitution. The resulting circuit will compute XORn−1 allowing us apply our inductive
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hypothesis in order to get a partition we can lift back up to the original circuit. For this reason we will first

prove the following lemma:

Lemma 14. Let C be a circuit computing XORn for n ≥ 3. There exists two inputs xi and xj that feed into

a block B in C as described in Theorem 11.

As in the proof of Theorem 8 (Schnorr) and Lemma 13 ((¬)XOR is read-twice), our strategy will be to

build up a local view around some input variables, forcing the optimal circuit to have the desired structure

by arguing that any deviation would contradict Facts 2, 3, Lemma 13, and Corollary 10 (optimal circuit size

for (¬)XOR is 3(n − 1)). Since this will involve a delicate case analysis, we also present a structured proof

in Appendix C which both makes the cases more explicit and may be easier to verify.

Proof. Let C be an optimal normalized circuit computing XORn where n ≥ 3. We first identify two variables

which will be inputs to block B (which we will later prove that B ≡ (¬)XOR2). Let h be the topologically-

first gate of C. As in the proof of Theorem 8, we know that h must be the successor of two distinct inputs

xi and xj for some i, j ∈ [n] since otherwise we can apply normalizing or tautology rules if we rewrite C,

which contradicts that it is an optimal normalized circuit.

By Lemma 13, we know that both xi and xj have exactly two costly successors. Let h′
i be the other

successor of xi and h′
j be the other successor of xj . Let fi be the other input to h′

i and let fj be the other

input to h′
j . Our goal will be to prove that these successors are the same gate, i.e. h′

i = h′
j , however, we

must first prove that all of the h gates have exactly one costly successor. To this end, we first observe

that h must have at least one costly successor. If it did not (and h or ¬h was the output of the circuit),

then we could substitute xi = α to fix h. This would make the circuit constant contradicting Corollary 12

(Elimination Rate Limit for Optimal XOR Circuits). Therefore h has at least one costly successor p. Via

the same argument, we can also show h′
i has at least one costly successor.

Let r be a costly successor of h′
i. We now argue that r is the only costly successor of h′

i. Suppose for

the sake of contradiction that h′
i also feeds into another costly gate r′. Again, if we substitute xi = β which

fixes h′
i during rewriting, we find h, h′

i, r and r′ are all removed. Notice h and h′
i are not equal to either r

or r′ since circuits are acyclic and h is first in our topological order. The removal of four costly gates from

a single substitution violates Corollary 12. We can argue symmetrically to show h′
j has exactly one costly

successor u.

Our next step is to show that p is the only costly successor of h. Assume otherwise and let p′ be another

costly gate fed by h. We perform a case analysis on the identities of p, p′, h′
i and h′

j and whether p
?
= h′

i,

p
?
= h′

j , p′
?
= h′

i, p′
?
= h′

j and h′
i

?
= h′

j . Any satisfiable set of these equalities falls into one of the three

cases listed below. For a full description of which sets of equalities fall into which cases see Figure 13 in

18



Appendix C. In each case, we apply suitable substitution for xi which eliminates four distinct gates and

violates Corollary 12.

1. Both p and p′ are distinct from h′
i and h′

j : Substitute xi = α to fix h. During rewriting, h′
i, h, p, p

′ are

removed.

2. Exactly one of p and p′ is equal to h′
i or h′

j . Without loss of generality, assume p′ = h′
j and that p ̸= h′

i.

Again we can substitute xi = α to fix h. Rewriting then removes h′
i, h, p, p

′.

3. Both p and p′ are equal to one of h′
i and h′

j . Substituting xi = α to fix h therefore eliminates h′
i, h, h

′
j

and r. The last elimination comes from the fact that after fixing h, both of h′
i’s inputs are constant —

thus regardless of whether h′
i is removed with a passing or fixing input, a constant will then feed into

r. Lastly r is distinct from h′
j in this case since h and xj are the two inputs of h′

j .

We now will show that h′
i = h′

j . Assume the contrary. Since h′
i and h′

j are distinct, p is not equal to at

least one of them. Without loss of generality, assume p ̸= h′
i. Again, substitute xi = α so that h is fixed

during rewriting. We also see that h′
i and p are removed by this. No other costly gates can be eliminated due

to Corollary 12. Let C ′ be the circuit after rewriting, and notice |C ′| = |C| − 3 and that C ′ is normalized.

Therefore, C ′ is a normalized circuit computing (¬)XORn−1 and by Lemma 13, we should have that xj

has two costly successors. However, this is not the case. Since h was removed via a fixing rule, xj loses a

successor upon h’s removal. Furthermore, since we are assuming h′
i ̸= h′

j , we know xj ̸= f ′
i . This means xj

cannot gain a successor even if h′
i is removed with a passing rule. Lastly, xj can only gain a successor upon

p’s removal if p = h′
j . However in this case, since h′

j only has one costly successor, xj still sees a net loss of

one costly successor. We reach a contradiction since xj does not feed into two costly gates in C ′, an optimal

circuit for (¬)XORn−1 and therefore h′
i = h′

j .

Define h′ := h′
i = h′

j and p′ := r = u. We now wish to show p = p′. Again, assume they are distinct, and

set xi = α to fix h. This also will eliminate h′ but there are two cases depending on which rule eliminates it:

1. h′ is eliminated via a fixing rule: in this case p′ will also be removed, and thus h, h′, p, p′ are four

distinct gates which are eliminated violating Corollary 12.

2. h′ is eliminated via a passing rule: Then xj inherits p′ as it’s only successor. However, since three gates

are eliminated (h, p, h′), xj should feed into two costly gates since the circuit is an optimal normalized

(¬)XORk−1 circuit which contradicts Lemma 13.

Let B be the block consisting of h, h′ and (¬)p—where we include ¬p in B if p only feeds into ¬ p. It

remains to show that (¬)p has two costly successors in C. Substitute xi = α and perform rewriting. Let

19



C ′ be the circuit after rewriting. While it is obvious that h and h′ have been removed, notice p is as well

since h is removed using a fixing rule and thus a constant feeds into p. Furthermore by Corollary 12, no

other gates are removed. Therefore, we can see that xj must inherit p’s successors. We observe that C ′ is a

normalized optimal circuit computing (¬)XORk−1 since C ′ has three fewer gates than C. By Lemma 13, xj

has two costly successors in C ′ which must have originally been exactly (¬)p’s costly successors.

We now conclude the proof of our main theorem. For n = 1 and n = 2 the theorem trivially holds: (¬)xi is

the unique normal optimal circuit for (¬)XOR1 and normal optimal (¬)XOR2 circuits trivially define a single

block.

Inductive Step of Theorem 11. Assume the statement holds for some k − 1 ≥ 2. Let C be a normal optimal

circuit computing (¬)XORk for k ≥ 3. By Lemma 14, we know C must have a block B that is fed by two

distinct inputs (¬)xi and (¬)xj . Let the three gates be h, h′, and p where (¬)p is the output gate of B. We

label the wires from (¬)xi and (¬)xj as in, the wires from (¬)p as out and all other internal wires of B as

core. We first need to partition the rest of the circuit into blocks and ensure that the two out wires are in

wires to the same block in the rest of C.

If we substitute xi = α to fix h and rewrite, we see that xj ’s successors are replaced by (¬)p’s successors

and that the three costly gates in B have been eliminated. Therefore the circuit computes (¬)XORk−1 and

is optimal. Applying the inductive hypothesis, we can partition the remaining circuit into blocks which we

lift back to the original. Notice that xj ’s new successors are in the same block and therefore in C, (¬)p’s

successors are also in the same block as desired.

It remains to prove that B computes (¬)XOR2. If we substitute xi = α to fix h and rewrite as above we

see that B reduces to (¬)xj , i.e. B(α, xj) = (¬)xj . We argue that if we instead substitute xi = 1− α that

B would also (¬)xj . It cannot reduce to a constant as otherwise C, which now computes XORk−1 does not

depend on xj , contradicting Fact 3. We also observe B cannot reduce to xj in both cases (or ¬xj in both

cases), as else we could replace B with xj (or ¬xj) and C would still correctly compute XORn with three

fewer gates — contradicting that C is optimal. Therefore B(1 − α, xj) = ¬B(α, xj) and the only binary

Boolean functions that satisfy these two equations are XOR2 and ¬XOR2 as desired.

4.3 Optimal (¬)XOR Circuit Identity Testing

In our study of the XOR-function, a natural decision problem for identity testing a circuit arises. Namely,

• Input: a normalized circuit C computing a Boolean function f : {0, 1}n → {0, 1}
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• Question: is C an optimal circuit compute XORn?

We will show that this problem is easy. The naive brute-force solution, where we evaluate the circuit over

all 2n inputs, takes time exponential in n. Building upon Theorem 11 we can improve this to linear time.

First, we need the converse of Theorem 11: binary trees of n− 1(¬)XOR2 blocks always compute (¬)XORn.

Formally,

Claim 15. Let C be a circuit of size 3(n−1) and let f : {0, 1}n → {0, 1} be the Boolean function it computes.

If C can be partitioned into n− 1 blocks as described in Theorem 11 each then f ≡ (¬)XORn.

The proof is a straightforward strong induction, albeit with a lengthy case analysis. The proof can be

found in Appendix D. Together, Theorem 11 and Claim 15 provide a simple algorithm to determine whether

C computes (¬)XOR2: partition C into blocks and verify that each computes (¬)XOR2. We then only need

to perform one evaluation to differentiate which parity function C computes.

Corollary 16. Given a normalized circuit C computing a Boolean function f : {0, 1}n → {0, 1}, deciding

whether C computes XORn can be computed in time O(n).

Proof. We first verify |C| = 3(n − 1) by counting the number of ∧ and ∨ gates, rejecting if not. We then

topologically sort the the gates in C and partition the circuit into n− 1 blocks, each of size 3, as described

in the proof of Theorem 11. We then must verify that each block computes (¬)XOR2. Since there are a

finite number of normalized optimal (¬)XOR2 blocks, we simply hardcode a list of them in our algorithm

and compare the blocks against this list. If any block does not computes (¬)XOR2 then we reject. Lastly,

we evaluate C on the all 0 input: if it evaluates to 0 then C computes XORn rather than ¬XORn and we

accept.

Since C is normalized each of the above steps runs in O(n) time. There are at most 2 · 3(n− 1)+ 1 ≤ 6n

¬ gates in the circuit (assuming each costly gate is fed by two ¬ gates and the output is negated), so at

most 9n gates total in the circuit. In our circuit representation, each input and node is joined by exactly one

node. Therefore topologically sorting takes O(n) time. Since our hardcoded list of (¬)XOR2 is of fixed size,

comparing each individual block against the list takes O(1) time for a total for O(n) since there are n − 1

blocks. Lastly evaluating the circuit takes O(n) time.

Correctness follows from Theorem 11 and Claim 15 along with the fact XORn(⃗0) = 0 ̸= ¬XORn(⃗0).

Remark 17. To test whether C computes ¬XORn, we can use the same proposed procedure, but with the

answers flipped in the last step.
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A Structured Proof of Schnorr

Below, we prove Theorem 8 with a structured proof as proposed by Lamport [Lam95; Lam12]. We believe

that this presentation style makes the intricate case analysis present both in this proof and that of Theorem

11 more explicit and readable. Furthermore, this style of proof is more amenable to verification using a

computer. As there has been recent work which formalizes term graph rewriting for use with proof assistants

[WHU23], it may be of independent interest to formally verify our proofs of Schnorr and Theorem 11.

Structured Proof of Theorem 8. Let C be an optimal circuit for XORn where n ≥ 2.

1. Let h be the first AND,OR gate of C in topological order, so h has (¬)xi, (¬)xj as inputs for i, j ∈ N.

2. i ̸= j

(a) Suppose not, so i = j

(b) Then h ≡ (¬)xi ⋄ (¬)xi where ⋄ ∈ {∧,∨}

(c) Thus, one of the normalizing or tautology rules from Gate Elim TGRS matches h

(d) Rewrite C finding h deleted

(e) Contradiction to optimality of C

3. The fanout of xi must be at least 2.

(a) Suppose not, so fanout of xi is 1.

(b) Substitute xj = α in C to fix h

(c) Rewrite C, finding that fanout of xi is now 0

(d) Thus, C |xj=α does not depend on xi

(e) Contradiction to Fact 3.

4. Let f be the other gate taking xi as input so f ̸= h

5. (¬)f is not the output gate of C.

(a) Suppose it is, so (¬)f is the output gate of C.

(b) Substitute xi = α in C to fix f

(c) Rewrite C, finding that output of C is constant

(d) Thus, C |xi=α is a constant function

(e) Contradiction to Fact 2.
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6. Let f ′ be a costly successor of f in C, such must exist.

7. Eliminate three distinct gates with a substitution.

(a) Substitute xi = α in C to fix f

(b) Rewrite C, finding at least f, h, f ′ deleted

(c) argument: Observe that xi “touches” gate h to eliminate, and it fixes f which “touches” gate f ′

(d) there exists a 1-bit restriction eliminating ≥ 3 gates

8. Conclude XORn requires at least 3 more costly gates than XORn−1.

9. Observe XOR1 requires 0 costly gates.

10. Use induction to show XORn requires at least 3(n− 1).
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B Detailed Term Graph Rewriting Demo

In this section, we show how the Term Graph Rewriting system we defined in Section 2.1 works on a small

example ¬xi ∧ xj .

Figure 7: The Term Graph for ¬xi ∧ xj

Assume we substitute xj = 0, and we then identify the rule 0→ ¬1

Figure 8: The Term Graph after substituting xj = 0

Replace 0 with ¬1 by adjusting the nodes and edges accordingly
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Figure 9: Identify 0→ ¬1

Identify the rule g ∧ ¬1→ ¬1

Figure 10: Rewrite 0 with ¬1

Replace g ∧ ¬1→ ¬1 with ¬1 by adjusting the nodes and edges accordingly. We notice that ¬xi is now

disconnected from the term graph.
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Figure 11: Rewrite g ∧ ¬1 with ¬1

Lastly, we clean up the disconnected part and obtain the end result of the term graph after the rewriting

process

Figure 12: The end result of the term graph ¬1
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C Structured Proof of Theorem 11

Below, we prove Theorem 11 (our Main Theorem) with a structured proof as proposed by Lamport [Lam95;

Lam12]. We believe that this presentation style makes the intricate case analysis present both in our proof

of Schnorr and this proof more explicit and readable. Furthermore, this style of proof is more amenable to

verification using a computer. As there has been recent work which formalizes term graph rewriting for use

with proof assistants [WHU23], it may be of independent interest to formally verify our proofs of Schnorr

and of our Main Theorem.

The bulk of the work is proving the inductive step. In the main body of the paper this is Lemma 14

which roughly corresponds to steps 1 - 17(f) of the inductive steps below.

Proof. Base Case:

1. Trivially holds for k = 1 and 2.

Assume Inductive Hypothesis for some k − 1 ≥ 1.

Inductive Step:

1. Let C be an optimal circuit for XORk.

2. Let h be the first AND, OR gate of C in topological order, so h has (¬)xi, (¬)xj as inputs for i, j ∈ N.

3. i ̸= j

(a) Suppose not, so i = j

(b) Then h ≡ (¬)xi ⋄ (¬)xi where ⋄ ∈ {∧,∨}

(c) Thus, one of the normalizing or tautology rules from Gate Elim TRS matches h

(d) Rewrite C finding h deleted

(e) Contradiction to optimality of C

4. The fanout of xi and xj must be 2 by Lemma 13.

(a) Let h′
i be the other costly successor of xi and let f ′

i be the other input or costly gate whose

successor is h′
i.

(b) Let h′
j be the other costly successor of xj and let f ′

j be the other input or costly gate whose

successor is h′
j .

5. h is not the output of the circuit.
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(a) Suppose it is, so (¬)h is the output gate of C.

(b) Substitute xi = α in C to fix h

(c) Rewrite C, finding that output of C is constant

(d) Thus, C |xi=α is a constant function

(e) Contradict Corollary 12.

6. Let p be a costly successor of h in C and let q be the other input or costly gate whose successor is p.

7. Argue symmetrically that h′
i is not the output of the circuit. Let r be a successor of h′

i and let s be

the other input or costly gate whose successor is p.

8. r is the only successor of h′
i.

(a) Suppose not, so ∃r′ ̸= r that is a costly successor of h′
i.

(b) Substitute xi = β to fix h′
i

(c) Rewrite C to find h′
i, h, r, r

′ deleted

(d) Contradict Corollary 12

9. Symmetrically h′
j is not the output of the circuit and has exactly one costly successor u. Let v be the

other input or costly gate whose successor is u.

10. p is the only successor of h

(a) Suppose not, so ∃p′ ̸= p that is a costly successor of h.

(b) We perform a case analysis depending on the the identities of p, p′, h′
i and h′

j (i.e. depending on

p
?
= h′

i, p
?
= h′

j , p
′ ?
= h′

j and h′
i

?
= h′

j). Each possible set of equalities falls into one of the three

cases below or is impossible, e.g. it is impossible for p = h′
i, p′ = h′

j and h′
i = h′

j since this implies

p = p′. A complete decision tree can be found in Figure 13.

i. Case 1: p, p′ are distinct from h′
i and h′

j .

A. Substitute xi = α to fix h.

B. Rewrite C to find h′
i, h, p, p

′ are removed.

C. Contradict Corollary 12.

ii. Case 2: Exactly one of p, p′ is equal to h′
i or h′

j

A. Without loss of generality assume p′ = h′
j and p ̸= h′

i.

B. Substitute xi = α to fix h.
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C. Rewrite C to find h′
i, h, p, p

′ removed.

D. Contradict Corollary 12.

iii. Case 3: p, p′ are equal to h′
i and h′

j .

A. Substitute xi = α to fix h.

B. Rewrite C to find h′
i, h, h

′
j and s removed.

C. argument: Observe that after fixing h, both inputs to h′
i are constants. After removing

h′
i a constant will be touching s so it will be removed.

D. argument: s is distinct from h′
j since h′

i is not an input to h′
j—h and xi are in this case.

E. Contradict Corollary 12.

11. h′
i = h′

j

(a) Suppose not, i.e. h′
i ̸= h′

j .

(b) p is not equal to at least one of h′
i or h′

j ; without loss of generality assume p ̸= h′
i.

(c) Substitute xi = α in C to fix h

(d) Rewrite C, finding h, h′
i and p are removed.

(e) No other costly gates are removed.

(f) argument: otherwise this violates Corollary 12.

(g) C is now a normalized optimal circuit computing (¬)XORk−1,

(h) argument: rewriting guarantees normalization, and |C| is now 3(k − 1) − 3 = 3(k − 2) so it is

optimal.

(i) xj has only one costly successor in C:

(j) argument: We will carefully step through rewriting.

i. Remove h via a fixing rule and find xj now has only one successor: h′
j .

ii. Remove h′
i via a passing rule and see xj does not gain any successors since h′

i ̸= h′
j

iii. Remove p and see there are two cases: p = h′
j and p ̸= h′

j .

A. Remove p = h′
j via a passing rule and find xj still has one successor since p = h′

j has one

successor.

B. Remove p ̸= h′
j and find xj still has one successor, h′

j since p ̸= h′
j .

iv. In both cases, conclude xj has one costly successor.

(k) Contradict Lemma 13 since C is optimal.
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12. Define h′ := h′
i = h′

j and p′ := r = u.

13. p = p′.

(a) Suppose otherwise, p ̸= p′

(b) Substitute xi = α to fix h.

(c) Rewrite C to see h and p have been removed and that there are two possibilities:

i. h is removed via a fixing rule

A. Find p′ is also removed

B. Contradict Corollary 12 since h, h′, p, p′ have been removed.

ii. h is removed via a passing rule

A. Find xj inherits p′ as it’s only successor.

B. Find C has three fewer costly gates and thus is a normalized optimal (¬)XORn−1 circuit

C. Contradict Lemma 13

(d) In both cases reach a contradiction.

14. Define B to be the block consisting of h, h′, (¬)p and label the wires from (¬)xi and (¬)xj as in, the

wires from (¬)p as out, and all others as core.

15. clarification: Here wires refers to the unique resultant nodes whose label is (¬)xi, (¬)xj , and (¬)p

respectively.

16. clarification: We label ¬xi, ¬xj , and ¬p as in or out if xi, xj or p only feed into ¬xi, ¬xj or ¬p and

no other gates.

17. We can properly partition the rest of C into blocks.

(a) Substitute xi = α to fix h.

(b) Rewrite C to find xj successors replaced by p’s successors.

(c) argument: only h, h′, p are removed by Corollary 12

(d) C is an optimal circuit for (¬)XORk−1 since three gates were removed.

(e) Apply the IH to partition C into k − 2 (¬)XOR2 blocks.

(f) xj must have exactly two costly successors by Lemma 13 and therefore p must have exactly two

costly successors.

(g) By IH, xj ’s successors are in the same (¬)XOR2 block.
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(h) Lift the partition back to the original C.

18. B computes (¬)XOR2

(a) Substitute xi = α to fix h.

(b) Rewrite C.

(c) argument : Find B reduces to (¬)xj .

i. Suppose it reduced to a constant.

ii. C no longer depends on xj .

iii. Contradict Fact 3.

(d) Substitute xi = 1− α to fix h.

(e) Rewrite C to find B reduces to (¬)xj as above.

(f) argument: C does not reduce the same way in both cases

i. Suppose otherwise. Without loss of generality it reduces to xj .

ii. Replace B in C with xj and find C still computes XORn even though it doesn’t depend on

xi.

iii. Contradict Fact 3

(g) argument: Find B computes (¬)XOR2 since B(0, xj) = (¬)xj and B(1, xj) = ¬B(0, xj).
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Figure 13: A decision tree for Step 10 in the Structured Proof of Theorem 11. For readability, we define I = h′
i

and J = h′
j . Notice each branch bottoms out when all remaining potential equalities can be determined

using substitution as well as transitivity and symmetry of equality. This prunes the depth of some branches
since certain systems of equalities (e.g. p = h′

i, h
′
i = h′

j , p ̸= h′
j) are unsatisfiable.
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D Proof of Claim 15

We will prove the claim using strong induction. When n = 1, the claim is trivial since the only optimal

normalized (¬)XOR1 circuit is (¬)x1. When n = 2, the entire circuit is itself an optimal normalized (¬)XOR2

block.

Now, assume the claim is true for n = 1, 2, . . . , k− 1 for some k− 1 ≥ 2. Namely, any normalized circuit

C that can be partitioned into 0, 1, . . . , k−2 blocks each computing (¬)XOR2 computes either XOR or ¬XOR

on its inputs. We show the claim holds when n = k. Let C be a normalized circuit that can be partitioned

into k − 1 blocks that each compute (¬)XOR2 and let f : {0, 1}k → {0, 1} be the function C computes.

We take the root block (i.e. the highest one in the topological order of the blocks) and look at its left

and right sub-circuits of blocks. Let L,R be the left and right sub-circuits respectively and define fL, fR to

be the two functions they compute. Notice C computes f ≡ (¬)XOR2(fL, fR). Furthermore, let XL, XR be

the sets of input variables of fL, fR respectively, and |XL| = s, |XR| = t. Lastly define the set of all input

variables X and observe X = XL ∪XR and |X| = s+ t = k.

By the inductive hypothesis, we know that fL(XL) = (¬)XORs(XL) and fR(XR) = (¬)XORt(XR). We

perform case analysis to argue that XOR2(fL, fR) computes the parity of the set of all input variables X for

all possible combinations of fL and fR. The full case analysis can be found in Table 1 below, but in short

1. when fL ≡ XORs and fR ≡ XORt, C computes XORk,

2. when fL ≡ XORs and fR ≡ ¬XORt, C computes ¬XORk.

3. when fL ≡ ¬XORs and fR ≡ XORt, C computes ¬XORk.

4. and when fL ≡ ¬XORs and fR ≡ ¬XORt, C computes XORk.

In all cases, C(X) either computes XORk(X) or ¬XORk(X) as desired.

The analysis for ¬XOR2(fL, fR) follows symmetrically with the bits flipped. By the principle of mathe-

matical induction, the claim is true for all n ≥ 1.
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No. of 1’s in XL and XR fL(XL), fR(XR) XOR2(fL, fR)
XL has even many 1’s
XR has even many 1’s

fL(XL) = 0
fR(XR) = 0

0

fL ≡ XORs
XL has even many 1’s
XR has odd many1’s

fL(XL) = 0
fR(XR) = 1

1

fR ≡ XORt
XL has odd many 1’s
XR has even many 1’s

fL(XL) = 1
fR(XR) = 0

1

XL has odd many 1’s
XR has odd many 1’s

fL(XL) = 0
fR(XR) = 0

0

XL has even many 1’s
XR has even many 1’s

fL(XL) = 0
fR(xR) = 1

1

fL ≡ XORs
XL has even many 1’s
XR has odd many 1’s

fL(XL) = 0
fR(xR) = 0

0

fR ≡ ¬XORt
XL has odd many 1’s
XR has even many 1’s

fL(XL) = 1
fR(XR) = 1

0

XL has odd many 1’s
XR has odd many 1’s

fL(XL) = 1
fR(XR) = 0

1

XL has even many 1’s
XR has even many 1’s

fL(XL) = 1
fR(XR) = 0

1

fL ≡ ¬XORs
XL has even many 1’s
XR has odd many 1’s

fL(XL) = 1
fR(XR) = 1

0

fR ≡ XORt
XL has odd many 1’s
XR has even many 1’s

fL(XL) = 0
fR(XR) = 0

0

XL has odd many 1’s
XR has odd many 1’s

fL(xL) = 0
fR(xR) = 1

1

XL has even many 1’s
XR has even many 1’s

fL(XL) = 1
fR(xR) = 1

0

fL ≡ ¬XORs
XL has even many 1’s
XR has odd many 1’s

fL(XL) = 1
fR(XR) = 0

1

fR ≡ ¬XORt
XL has odd many 1’s
XR has even many 1’s

fL(xL) = 0
fR(xR) = 1

1

XL has odd many 1’s
XR has even many 1’s

fL(XL) = 0
fR(XR) = 0

0

Table 1: The case analysis for C computing XOR2(fL, fR)
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E Gate Elimination as a Convergent Term Graph Rewriting System

In this section we will formally present gate elimination as a convergent term graph rewriting system,

according to the following steps.

1. Identify a list of Boolean identities — EB — which are sufficient for gate elimination arguments.

2. Use the Knuth-Bendix algorithm on EB to produce a convergent formula simplification system RB .

3. Lift RB to a convergent circuit simplification system S via Plump’s account of term graph rewriting.

E.1 Boolean Identities

The identities present in EB are valid for Boolean algebra and appear in standard gate elimination arguments

(Definition 18). That is, for all g ∈ {0, 1}, each identity is true when ≈ is interpreted as equality on the

Boolean domain. Therefore, consequences derived from EB via “sound inference rules” are true. We do not

treat that equational logic4 formally, because we transform EB into a convergent rewriting system in the next

subsection.

Definition 18 (Gate Elimination — Useful Identities). We denote by EB the following set of identities:

1 ∧ 1 ≈ 1 1 ∧ 1 ≈ 1 ¬1 ≈ 0 g ∧ 1 ≈ g g ∧ 0 ≈ 0 g ∧ ¬g ≈ 0 g ∧ g ≈ g

1 ∧ 0 ≈ 0 1 ∧ 0 ≈ 1 ¬0 ≈ 1 1 ∧ g ≈ g 0 ∧ g ≈ 0 ¬g ∧ g ≈ 0 g ∨ g ≈ g

0 ∧ 1 ≈ 0 0 ∧ 1 ≈ 1 ¬¬g ≈ g g ∨ 0 ≈ g g ∨ 1 ≈ 1 g ∨ ¬g ≈ 1

0 ∧ 0 ≈ 0 0 ∧ 0 ≈ 0 0 ∨ g ≈ g 1 ∨ g ≈ 1 ¬g ∨ g ≈ 1

(tt and) (tt or) (tt not) (passing) (fixing) (tautology) (simplify)

There are a few basic Boolean identities that are not present in EB such as commutativity of ∧ and ∨.

We exclude these for two reasons: (1) including them would produce a system that is not convergent and

(2) these rules do not “simplify" Boolean expressions—their right hand sides do not have fewer Boolean

operators. While EB is not powerful enough to fully characterize Boolean algebra, it is powerful enough to

capture gate elimination arguments with the added benefit that it’s resulting system is well-behaved. The

identities are available in machine-readable form at this hyperlink.

We will now transform this set of identities into an abstract rewriting system on Boolean formulas.
4See Chapter 3 of [BN98] or the exposition of Birkhoff’s Theorem in [Pla93].
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E.2 Convergent Term Rewriting for Boolean Formulas

An abstract rewriting system is just a set of objects A together with a binary relation → on A called the

rewrite relation. We are constructing a system where A contains Boolean circuits over the DeMorgan basis

and C → C ′ holds when C simplifies to C ′ via a single step of gate elimination. We’ll first introduce

some terminology about abstract rewriting systems as well as define some desirable properties. For elements

a, a′ ∈ A, write a
∗→ a′ to mean that there is a finite path of rewrite steps from a to a′, and say that a is in

normal form if there is no b such that a→ b.

Definition 19 (Definition 2.1.3 of [BN98]). The rewrite relation → is called

terminating iff there is no infinite path a0 → a1 → . . .

confluent iff for every triple of objects a, b, b′ ∈ A, if a ∗→ b and a
∗→ b′, then there is a c ∈ A such that

both b
∗→ c and b′

∗→ c —

convergent iff it is both confluent and terminating.

Term rewriting is a classical special case of abstract rewriting systems, rich in motivation from algebra,

logic, and programming language theory. In that setting the objects are terms — treelike expressions built

up from function symbols, constants, and variables. We will take an intermediate step through treelike

expressions to get to DAG-like expressions: circuits. Terms in general and DeMorgan formulas in particular

are defined below, along with some auxiliary notions required to specify appropriate rewrite relations.

Definition 20 (DeMorgan Formulas as Terms). Let Σ be a finite tuple of function and constant symbols

with arities d⃗ ∈ N|Σ|, and let Z denote an infinite set of variables. T (Σ, Z) denotes the set of all terms over

Σ and Z, defined inductively:

• Every variable z ∈ Z is a term.

• Every application of a function symbol fi ∈ Σ to di terms t1, . . . , tdi of the form f(t1, . . . , tdi) is a term.

F = T (B,X) where X = {g, x1, x2, . . . } is the set of DeMorgan formulas.

A substitution σ is a mapping between terms that may replace any finite number of variables with another

term, but must leave constants and function applications fixed. So, can write substitutions as σ = {xi 7→ t}.

A term rewrite rule is a pair of terms ⟨ℓ, r⟩ written as ℓ→ r, such that (1) ℓ is not a variable and (2) the set

of variables in r is a subset of the variables in ℓ. A term rewriting system over T (Σ, Z) is a set R of term

rewrite rules where all pairs of terms are from T (Σ, Z). Finally, we have:
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Definition 21 (Term Rewriting, Definition 4.1 of [Plu99]). The rewrite relation →R on T (Σ, Z) induced

by a term rewriting system R is defined as follows:

t→R u if there is a rule ℓ→ r in R and a substitution σ such that

1. The left-hand side of the rule “matches” t — σ(ℓ) is a subterm of t

2. The right-hand side “generates” u — u is obtained from t by replacing an occurence of σ(ℓ) by σ(r)

We can now give the precise type of EB : it is a set of pairs of terms from F . We now wish to transform EB

into a convergent rewriting system RB . Rather than manually rewriting our equations as term rewrite rules

(e.g. g ∧ 1 ≈ g =⇒ g ∧ 1 → g) and then proving convergence from scratch, we use a well known algorithm

designed to do just this: the Knuth-Bendix completion algorithm [KB70; Hue81].

Theorem 22 (Knuth-Bendix, [SZ12]). Given as input a set of identities E over T (Σ, Z), if Knuth-Bendix

terminates, it outputs a convergent term rewriting system R over T (Σ, Z) with the same consequences as E.

At a high level, the Knuth-Bendix completion algorithm works by ensuring that every pair of rules which

overlap, so-called critical pairs, do not create ambiguities. If we apply the pair in either order to the same

expression, we will get the same final result. Furthermore, the algorithm carefully adds new term rules as

well as simplifies rules in order to create a convergent system. Manually running the algorithm in our case

would require checking
(
25
2

)
pairs of equations — although not every possible pair overlaps. While this is

technically feasible to do by hand, we instead will use the Knuth-Bendix Completion Visualizer (KBCV)

which is open-source software implementing the algorithm [SZ12].

Lemma 23. There is a convergent term rewriting system RB for simplification of DeMorgan formulas.

Proof. We ran Knuth-Bendix on the equations EB of Definition 18 using the open-source software Knuth-

Bendix Completion Visualizer (KBCV, [SZ12]). The algorithm terminated and printed the TRS RB listed

in Definition 24 below. We have grouped the rules based on their structure and impact on the circuit.

A machine-checkable transcript of the terminating execution is available at this hyperlink for verification.

Therefore, RB is convergent and has the same consequences as EB .
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Definition 24 (Term Rewriting System RB).

0→ ¬1 g ∧ ¬1→ ¬1 g ∧ 1→ g g ∧ ¬g → ¬1

¬¬g → g ¬1 ∧ g → ¬1 1 ∧ g → g ¬g ∧ g → ¬1

g ∧ g → g g ∨ 1→ 1 g ∨ ¬1→ g g ∨ ¬g → 1

g ∨ g → g 1 ∨ g → 1 ¬1 ∨ g → g ¬g ∨ g → 1

(normalizing) (fixing) (passing) (tautology)

We see that RB is a smaller set than the original EB . Knuth-Bendix has made a few simplifications such

as removing redundant tt identities. However, it’s one additional rule, 0→ ¬1, stands out. This is the only

rewrite rule in the system that increases the number of Boolean operators in the formula. We argue this is a

sensible addition for two reasons: (1) the addition of ¬ gates in our circuits will be free as they do not count

towards the circuit complexity and (2) the expressions become simpler in the sense that after rewriting 0

into ¬1 there is only a single type of constant present. It also does not interfere with the structure of gate

elimination arguments in the DeMorgan basis. We can still substitute a variable with 0; it will just need to

be replaced first by −1 during rewriting. The term rewrite rules are available in machine-readable form at

this hyperlink.

All that remains is lifting this rewriting system for formulas to one for circuits.

E.3 Convergent Term Graph Rewriting for Boolean Circuits

Following [Plu99], we can lift a term rewriting system to a term graph rewriting system by generalizing the

notion of pattern matching. We say there is a hypergraph morphism f between hypergraphs G and H if there

are vertex and edge functions fV : VG → VH and fE : EG → EH that preserve labels and attachment nodes,

so: for every g ∈ EG labG(g) = labH(fE(g)) and attH(fE(g)) = f∗
V (attG(g)) where f∗

V is the vectorized fV .

For a term t, define ⋄t as the parse tree of t encoded by a hypergraph, with all repeated variables collapsed

into “open” vertices — that is, the edge xi is deleted for each xi, but the unique result vertex remains and is

referenced by every edge that was attached to xi in the parse tree. A term graph L is an instance of a term

l if there is a graph morphism ⋄l → L that sends the root of ⋄l to the root of L. Given a node v in a term

graph G and a term rewrite rule r → ℓ, the pair ⟨v, ℓ→ r⟩ is a redux if the subgraph of G reachable from v

(denoted G[v]) is an instance of ℓ. Finally, we define a single step of graph rewriting: essentially, a subgraph

matching the left hand side of a rule is sliced out and replaced with the right-hand side.

Definition 25 (Term Graph Rewriting (Definition 1.4.5 of [Plu99])). Let G be a term graph containing a
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redux ⟨v, l→ r⟩. There is a proper rewrite step from G to H where H is constructed by

1. G1 ← G− {e} where e is the unique edge that satisfies res(e) = v

2. G2 ← the disjoint union of G1 with ⋄r where

• v is identified with root(⋄r)

• Every edge labeled with a variable in ⋄r is identified according to the morphism that matched ℓ

to G.

3. Garbage collection: H is obtained from G2 by deleting all nodes and edges not reachable from the

root.

The following Theorem shows an immediate connection between Term Rewriting that we introduced in

the previous section and Term Graph Rewriting:

Theorem 26 (Corollary 1.7.4 of [Plu99]). If R is a convergent term rewriting system, then R induces a

convergent term graph rewriting system with collapse.

Collapse is an additional rule in the term graph rewriting system that allows us to merge two rooted

subhypergraphs if there exists a root-preserving hypergraph morphism between them. For circuits, this

operation would correspond to finding redundant subcircuits and combining them into one. This is natural

simplification step to include; indeed, if our goal was to optimize non-optimal circuits then any system

missing this rule would be insufficient. However, in gate elimination arguments this rule’s addition will be

irrelevant—we typically start with optimal circuits and being able to apply a collapse rule would immediately

violate said optimality. It’s addition will serve only to guarantee that the system is convergent.

Applying this lifting theorem to our term rewriting system RB for simplification of DeMorgan formulas

yields our system for gate elimination.

Theorem 27. RB induces a convergent Term Graph Rewriting System, denoted S.
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